Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

a^{2}-1=36
Consider \left(a-1\right)\left(a+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
a^{2}=36+1
Add 1 to both sides.
a^{2}=37
Add 36 and 1 to get 37.
a=\sqrt{37} a=-\sqrt{37}
Take the square root of both sides of the equation.
a^{2}-1=36
Consider \left(a-1\right)\left(a+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
a^{2}-1-36=0
Subtract 36 from both sides.
a^{2}-37=0
Subtract 36 from -1 to get -37.
a=\frac{0±\sqrt{0^{2}-4\left(-37\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -37 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{0±\sqrt{-4\left(-37\right)}}{2}
Square 0.
a=\frac{0±\sqrt{148}}{2}
Multiply -4 times -37.
a=\frac{0±2\sqrt{37}}{2}
Take the square root of 148.
a=\sqrt{37}
Now solve the equation a=\frac{0±2\sqrt{37}}{2} when ± is plus.
a=-\sqrt{37}
Now solve the equation a=\frac{0±2\sqrt{37}}{2} when ± is minus.
a=\sqrt{37} a=-\sqrt{37}
The equation is now solved.