Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

a^{2}+a\left(-\frac{1}{100}\right)-a-\left(-\frac{1}{100}\right)-a\left(a-\frac{101}{100}\right)
Apply the distributive property by multiplying each term of a-1 by each term of a-\frac{1}{100}.
a^{2}-\frac{101}{100}a-\left(-\frac{1}{100}\right)-a\left(a-\frac{101}{100}\right)
Combine a\left(-\frac{1}{100}\right) and -a to get -\frac{101}{100}a.
a^{2}-\frac{101}{100}a+\frac{1}{100}-a\left(a-\frac{101}{100}\right)
Multiply -1 and -\frac{1}{100} to get \frac{1}{100}.
a^{2}-\frac{101}{100}a+\frac{1}{100}-\left(a^{2}+a\left(-\frac{101}{100}\right)\right)
Use the distributive property to multiply a by a-\frac{101}{100}.
a^{2}-\frac{101}{100}a+\frac{1}{100}-a^{2}-a\left(-\frac{101}{100}\right)
To find the opposite of a^{2}+a\left(-\frac{101}{100}\right), find the opposite of each term.
a^{2}-\frac{101}{100}a+\frac{1}{100}-a^{2}+\frac{101}{100}a
Multiply -1 and -\frac{101}{100} to get \frac{101}{100}.
-\frac{101}{100}a+\frac{1}{100}+\frac{101}{100}a
Combine a^{2} and -a^{2} to get 0.
\frac{1}{100}
Combine -\frac{101}{100}a and \frac{101}{100}a to get 0.
\frac{\left(a-1\right)\left(100a-1\right)-a\left(100a-101\right)}{100}
Factor out \frac{1}{100}.