Evaluate
\frac{1}{100}=0.01
Factor
\frac{1}{2 ^ {2} \cdot 5 ^ {2}} = 0.01
Share
Copied to clipboard
a^{2}+a\left(-\frac{1}{100}\right)-a-\left(-\frac{1}{100}\right)-a\left(a-\frac{101}{100}\right)
Apply the distributive property by multiplying each term of a-1 by each term of a-\frac{1}{100}.
a^{2}-\frac{101}{100}a-\left(-\frac{1}{100}\right)-a\left(a-\frac{101}{100}\right)
Combine a\left(-\frac{1}{100}\right) and -a to get -\frac{101}{100}a.
a^{2}-\frac{101}{100}a+\frac{1}{100}-a\left(a-\frac{101}{100}\right)
Multiply -1 and -\frac{1}{100} to get \frac{1}{100}.
a^{2}-\frac{101}{100}a+\frac{1}{100}-\left(a^{2}+a\left(-\frac{101}{100}\right)\right)
Use the distributive property to multiply a by a-\frac{101}{100}.
a^{2}-\frac{101}{100}a+\frac{1}{100}-a^{2}-a\left(-\frac{101}{100}\right)
To find the opposite of a^{2}+a\left(-\frac{101}{100}\right), find the opposite of each term.
a^{2}-\frac{101}{100}a+\frac{1}{100}-a^{2}+\frac{101}{100}a
Multiply -1 and -\frac{101}{100} to get \frac{101}{100}.
-\frac{101}{100}a+\frac{1}{100}+\frac{101}{100}a
Combine a^{2} and -a^{2} to get 0.
\frac{1}{100}
Combine -\frac{101}{100}a and \frac{101}{100}a to get 0.
\frac{\left(a-1\right)\left(100a-1\right)-a\left(100a-101\right)}{100}
Factor out \frac{1}{100}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}