Solve for a
a=4
a=0
Share
Copied to clipboard
a^{2}-2a+1+a^{2}=\left(a+1\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(a-1\right)^{2}.
2a^{2}-2a+1=\left(a+1\right)^{2}
Combine a^{2} and a^{2} to get 2a^{2}.
2a^{2}-2a+1=a^{2}+2a+1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(a+1\right)^{2}.
2a^{2}-2a+1-a^{2}=2a+1
Subtract a^{2} from both sides.
a^{2}-2a+1=2a+1
Combine 2a^{2} and -a^{2} to get a^{2}.
a^{2}-2a+1-2a=1
Subtract 2a from both sides.
a^{2}-4a+1=1
Combine -2a and -2a to get -4a.
a^{2}-4a+1-1=0
Subtract 1 from both sides.
a^{2}-4a=0
Subtract 1 from 1 to get 0.
a\left(a-4\right)=0
Factor out a.
a=0 a=4
To find equation solutions, solve a=0 and a-4=0.
a^{2}-2a+1+a^{2}=\left(a+1\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(a-1\right)^{2}.
2a^{2}-2a+1=\left(a+1\right)^{2}
Combine a^{2} and a^{2} to get 2a^{2}.
2a^{2}-2a+1=a^{2}+2a+1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(a+1\right)^{2}.
2a^{2}-2a+1-a^{2}=2a+1
Subtract a^{2} from both sides.
a^{2}-2a+1=2a+1
Combine 2a^{2} and -a^{2} to get a^{2}.
a^{2}-2a+1-2a=1
Subtract 2a from both sides.
a^{2}-4a+1=1
Combine -2a and -2a to get -4a.
a^{2}-4a+1-1=0
Subtract 1 from both sides.
a^{2}-4a=0
Subtract 1 from 1 to get 0.
a=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -4 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-4\right)±4}{2}
Take the square root of \left(-4\right)^{2}.
a=\frac{4±4}{2}
The opposite of -4 is 4.
a=\frac{8}{2}
Now solve the equation a=\frac{4±4}{2} when ± is plus. Add 4 to 4.
a=4
Divide 8 by 2.
a=\frac{0}{2}
Now solve the equation a=\frac{4±4}{2} when ± is minus. Subtract 4 from 4.
a=0
Divide 0 by 2.
a=4 a=0
The equation is now solved.
a^{2}-2a+1+a^{2}=\left(a+1\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(a-1\right)^{2}.
2a^{2}-2a+1=\left(a+1\right)^{2}
Combine a^{2} and a^{2} to get 2a^{2}.
2a^{2}-2a+1=a^{2}+2a+1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(a+1\right)^{2}.
2a^{2}-2a+1-a^{2}=2a+1
Subtract a^{2} from both sides.
a^{2}-2a+1=2a+1
Combine 2a^{2} and -a^{2} to get a^{2}.
a^{2}-2a+1-2a=1
Subtract 2a from both sides.
a^{2}-4a+1=1
Combine -2a and -2a to get -4a.
a^{2}-4a+1-1=0
Subtract 1 from both sides.
a^{2}-4a=0
Subtract 1 from 1 to get 0.
a^{2}-4a+\left(-2\right)^{2}=\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-4a+4=4
Square -2.
\left(a-2\right)^{2}=4
Factor a^{2}-4a+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-2\right)^{2}}=\sqrt{4}
Take the square root of both sides of the equation.
a-2=2 a-2=-2
Simplify.
a=4 a=0
Add 2 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}