Evaluate
2ab-3a^{2}+\frac{3b}{2}+4a
Expand
2ab-3a^{2}+\frac{3b}{2}+4a
Share
Copied to clipboard
a-\frac{1}{2}b-\left(3a^{2}-2ba\right)+3a+2b
Use the distributive property to multiply 3a-2b by a.
a-\frac{1}{2}b-3a^{2}-\left(-2ba\right)+3a+2b
To find the opposite of 3a^{2}-2ba, find the opposite of each term.
a-\frac{1}{2}b-3a^{2}+2ba+3a+2b
The opposite of -2ba is 2ba.
4a-\frac{1}{2}b-3a^{2}+2ba+2b
Combine a and 3a to get 4a.
4a+\frac{3}{2}b-3a^{2}+2ba
Combine -\frac{1}{2}b and 2b to get \frac{3}{2}b.
a-\frac{1}{2}b-\left(3a^{2}-2ba\right)+3a+2b
Use the distributive property to multiply 3a-2b by a.
a-\frac{1}{2}b-3a^{2}-\left(-2ba\right)+3a+2b
To find the opposite of 3a^{2}-2ba, find the opposite of each term.
a-\frac{1}{2}b-3a^{2}+2ba+3a+2b
The opposite of -2ba is 2ba.
4a-\frac{1}{2}b-3a^{2}+2ba+2b
Combine a and 3a to get 4a.
4a+\frac{3}{2}b-3a^{2}+2ba
Combine -\frac{1}{2}b and 2b to get \frac{3}{2}b.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}