Solve for a
\left\{\begin{matrix}a=-\frac{\left(-1+3i\right)y+\left(-5-5i\right)}{5x}\text{, }&x\neq 0\\a\in \mathrm{C}\text{, }&y=1-2i\text{ and }x=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=-\frac{\left(-1+3i\right)y+\left(-5-5i\right)}{5a}\text{, }&a\neq 0\\x\in \mathrm{C}\text{, }&y=1-2i\text{ and }a=0\end{matrix}\right.
Share
Copied to clipboard
a\times \frac{x}{1+i}=1-\frac{y}{1-2i}
Subtract \frac{y}{1-2i} from both sides.
\left(\frac{1}{2}-\frac{1}{2}i\right)xa=\left(-\frac{1}{5}-\frac{2}{5}i\right)y+1
The equation is in standard form.
\frac{\left(\frac{1}{2}-\frac{1}{2}i\right)xa}{\left(\frac{1}{2}-\frac{1}{2}i\right)x}=\frac{\left(-\frac{1}{5}-\frac{2}{5}i\right)y+1}{\left(\frac{1}{2}-\frac{1}{2}i\right)x}
Divide both sides by \left(\frac{1}{2}-\frac{1}{2}i\right)x.
a=\frac{\left(-\frac{1}{5}-\frac{2}{5}i\right)y+1}{\left(\frac{1}{2}-\frac{1}{2}i\right)x}
Dividing by \left(\frac{1}{2}-\frac{1}{2}i\right)x undoes the multiplication by \left(\frac{1}{2}-\frac{1}{2}i\right)x.
a=\frac{\left(\frac{1}{5}+\frac{1}{5}i\right)\left(\left(-1-2i\right)y+5\right)}{x}
Divide 1+\left(-\frac{1}{5}-\frac{2}{5}i\right)y by \left(\frac{1}{2}-\frac{1}{2}i\right)x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}