Skip to main content
Solve for a (complex solution)
Tick mark Image
Solve for b (complex solution)
Tick mark Image
Solve for a
Tick mark Image
Solve for b
Tick mark Image

Similar Problems from Web Search

Share

a^{2}-b^{2}+\left(3a+3b\right)\left(a-b\right)=4\left(a^{2}-b^{2}\right)
Use the distributive property to multiply 3 by a+b.
a^{2}-b^{2}+3a^{2}-3b^{2}=4\left(a^{2}-b^{2}\right)
Use the distributive property to multiply 3a+3b by a-b and combine like terms.
4a^{2}-b^{2}-3b^{2}=4\left(a^{2}-b^{2}\right)
Combine a^{2} and 3a^{2} to get 4a^{2}.
4a^{2}-4b^{2}=4\left(a^{2}-b^{2}\right)
Combine -b^{2} and -3b^{2} to get -4b^{2}.
4a^{2}-4b^{2}=4a^{2}-4b^{2}
Use the distributive property to multiply 4 by a^{2}-b^{2}.
4a^{2}-4b^{2}-4a^{2}=-4b^{2}
Subtract 4a^{2} from both sides.
-4b^{2}=-4b^{2}
Combine 4a^{2} and -4a^{2} to get 0.
b^{2}=b^{2}
Cancel out -4 on both sides.
\text{true}
Reorder the terms.
a\in \mathrm{C}
This is true for any a.
a^{2}-b^{2}+\left(3a+3b\right)\left(a-b\right)=4\left(a^{2}-b^{2}\right)
Use the distributive property to multiply 3 by a+b.
a^{2}-b^{2}+3a^{2}-3b^{2}=4\left(a^{2}-b^{2}\right)
Use the distributive property to multiply 3a+3b by a-b and combine like terms.
4a^{2}-b^{2}-3b^{2}=4\left(a^{2}-b^{2}\right)
Combine a^{2} and 3a^{2} to get 4a^{2}.
4a^{2}-4b^{2}=4\left(a^{2}-b^{2}\right)
Combine -b^{2} and -3b^{2} to get -4b^{2}.
4a^{2}-4b^{2}=4a^{2}-4b^{2}
Use the distributive property to multiply 4 by a^{2}-b^{2}.
4a^{2}-4b^{2}+4b^{2}=4a^{2}
Add 4b^{2} to both sides.
4a^{2}=4a^{2}
Combine -4b^{2} and 4b^{2} to get 0.
a^{2}=a^{2}
Cancel out 4 on both sides.
\text{true}
Reorder the terms.
b\in \mathrm{C}
This is true for any b.
a^{2}-b^{2}+\left(3a+3b\right)\left(a-b\right)=4\left(a^{2}-b^{2}\right)
Use the distributive property to multiply 3 by a+b.
a^{2}-b^{2}+3a^{2}-3b^{2}=4\left(a^{2}-b^{2}\right)
Use the distributive property to multiply 3a+3b by a-b and combine like terms.
4a^{2}-b^{2}-3b^{2}=4\left(a^{2}-b^{2}\right)
Combine a^{2} and 3a^{2} to get 4a^{2}.
4a^{2}-4b^{2}=4\left(a^{2}-b^{2}\right)
Combine -b^{2} and -3b^{2} to get -4b^{2}.
4a^{2}-4b^{2}=4a^{2}-4b^{2}
Use the distributive property to multiply 4 by a^{2}-b^{2}.
4a^{2}-4b^{2}-4a^{2}=-4b^{2}
Subtract 4a^{2} from both sides.
-4b^{2}=-4b^{2}
Combine 4a^{2} and -4a^{2} to get 0.
b^{2}=b^{2}
Cancel out -4 on both sides.
\text{true}
Reorder the terms.
a\in \mathrm{R}
This is true for any a.
a^{2}-b^{2}+\left(3a+3b\right)\left(a-b\right)=4\left(a^{2}-b^{2}\right)
Use the distributive property to multiply 3 by a+b.
a^{2}-b^{2}+3a^{2}-3b^{2}=4\left(a^{2}-b^{2}\right)
Use the distributive property to multiply 3a+3b by a-b and combine like terms.
4a^{2}-b^{2}-3b^{2}=4\left(a^{2}-b^{2}\right)
Combine a^{2} and 3a^{2} to get 4a^{2}.
4a^{2}-4b^{2}=4\left(a^{2}-b^{2}\right)
Combine -b^{2} and -3b^{2} to get -4b^{2}.
4a^{2}-4b^{2}=4a^{2}-4b^{2}
Use the distributive property to multiply 4 by a^{2}-b^{2}.
4a^{2}-4b^{2}+4b^{2}=4a^{2}
Add 4b^{2} to both sides.
4a^{2}=4a^{2}
Combine -4b^{2} and 4b^{2} to get 0.
a^{2}=a^{2}
Cancel out 4 on both sides.
\text{true}
Reorder the terms.
b\in \mathrm{R}
This is true for any b.