Solve for a (complex solution)
a\in \mathrm{C}
Solve for b (complex solution)
b\in \mathrm{C}
Solve for a
a\in \mathrm{R}
Solve for b
b\in \mathrm{R}
Share
Copied to clipboard
a^{2}-b^{2}+\left(3a+3b\right)\left(a-b\right)=4\left(a^{2}-b^{2}\right)
Use the distributive property to multiply 3 by a+b.
a^{2}-b^{2}+3a^{2}-3b^{2}=4\left(a^{2}-b^{2}\right)
Use the distributive property to multiply 3a+3b by a-b and combine like terms.
4a^{2}-b^{2}-3b^{2}=4\left(a^{2}-b^{2}\right)
Combine a^{2} and 3a^{2} to get 4a^{2}.
4a^{2}-4b^{2}=4\left(a^{2}-b^{2}\right)
Combine -b^{2} and -3b^{2} to get -4b^{2}.
4a^{2}-4b^{2}=4a^{2}-4b^{2}
Use the distributive property to multiply 4 by a^{2}-b^{2}.
4a^{2}-4b^{2}-4a^{2}=-4b^{2}
Subtract 4a^{2} from both sides.
-4b^{2}=-4b^{2}
Combine 4a^{2} and -4a^{2} to get 0.
b^{2}=b^{2}
Cancel out -4 on both sides.
\text{true}
Reorder the terms.
a\in \mathrm{C}
This is true for any a.
a^{2}-b^{2}+\left(3a+3b\right)\left(a-b\right)=4\left(a^{2}-b^{2}\right)
Use the distributive property to multiply 3 by a+b.
a^{2}-b^{2}+3a^{2}-3b^{2}=4\left(a^{2}-b^{2}\right)
Use the distributive property to multiply 3a+3b by a-b and combine like terms.
4a^{2}-b^{2}-3b^{2}=4\left(a^{2}-b^{2}\right)
Combine a^{2} and 3a^{2} to get 4a^{2}.
4a^{2}-4b^{2}=4\left(a^{2}-b^{2}\right)
Combine -b^{2} and -3b^{2} to get -4b^{2}.
4a^{2}-4b^{2}=4a^{2}-4b^{2}
Use the distributive property to multiply 4 by a^{2}-b^{2}.
4a^{2}-4b^{2}+4b^{2}=4a^{2}
Add 4b^{2} to both sides.
4a^{2}=4a^{2}
Combine -4b^{2} and 4b^{2} to get 0.
a^{2}=a^{2}
Cancel out 4 on both sides.
\text{true}
Reorder the terms.
b\in \mathrm{C}
This is true for any b.
a^{2}-b^{2}+\left(3a+3b\right)\left(a-b\right)=4\left(a^{2}-b^{2}\right)
Use the distributive property to multiply 3 by a+b.
a^{2}-b^{2}+3a^{2}-3b^{2}=4\left(a^{2}-b^{2}\right)
Use the distributive property to multiply 3a+3b by a-b and combine like terms.
4a^{2}-b^{2}-3b^{2}=4\left(a^{2}-b^{2}\right)
Combine a^{2} and 3a^{2} to get 4a^{2}.
4a^{2}-4b^{2}=4\left(a^{2}-b^{2}\right)
Combine -b^{2} and -3b^{2} to get -4b^{2}.
4a^{2}-4b^{2}=4a^{2}-4b^{2}
Use the distributive property to multiply 4 by a^{2}-b^{2}.
4a^{2}-4b^{2}-4a^{2}=-4b^{2}
Subtract 4a^{2} from both sides.
-4b^{2}=-4b^{2}
Combine 4a^{2} and -4a^{2} to get 0.
b^{2}=b^{2}
Cancel out -4 on both sides.
\text{true}
Reorder the terms.
a\in \mathrm{R}
This is true for any a.
a^{2}-b^{2}+\left(3a+3b\right)\left(a-b\right)=4\left(a^{2}-b^{2}\right)
Use the distributive property to multiply 3 by a+b.
a^{2}-b^{2}+3a^{2}-3b^{2}=4\left(a^{2}-b^{2}\right)
Use the distributive property to multiply 3a+3b by a-b and combine like terms.
4a^{2}-b^{2}-3b^{2}=4\left(a^{2}-b^{2}\right)
Combine a^{2} and 3a^{2} to get 4a^{2}.
4a^{2}-4b^{2}=4\left(a^{2}-b^{2}\right)
Combine -b^{2} and -3b^{2} to get -4b^{2}.
4a^{2}-4b^{2}=4a^{2}-4b^{2}
Use the distributive property to multiply 4 by a^{2}-b^{2}.
4a^{2}-4b^{2}+4b^{2}=4a^{2}
Add 4b^{2} to both sides.
4a^{2}=4a^{2}
Combine -4b^{2} and 4b^{2} to get 0.
a^{2}=a^{2}
Cancel out 4 on both sides.
\text{true}
Reorder the terms.
b\in \mathrm{R}
This is true for any b.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}