Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(a^{2}\right)^{2}-1-\left(a^{2}-1\right)^{2}-\left(2a^{2}-1\right)^{2}+2a^{2}\left(a^{2}-3\right)
Consider \left(a^{2}-1\right)\left(a^{2}+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
a^{4}-1-\left(a^{2}-1\right)^{2}-\left(2a^{2}-1\right)^{2}+2a^{2}\left(a^{2}-3\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
a^{4}-1-\left(\left(a^{2}\right)^{2}-2a^{2}+1\right)-\left(2a^{2}-1\right)^{2}+2a^{2}\left(a^{2}-3\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(a^{2}-1\right)^{2}.
a^{4}-1-\left(a^{4}-2a^{2}+1\right)-\left(2a^{2}-1\right)^{2}+2a^{2}\left(a^{2}-3\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
a^{4}-1-a^{4}+2a^{2}-1-\left(2a^{2}-1\right)^{2}+2a^{2}\left(a^{2}-3\right)
To find the opposite of a^{4}-2a^{2}+1, find the opposite of each term.
-1+2a^{2}-1-\left(2a^{2}-1\right)^{2}+2a^{2}\left(a^{2}-3\right)
Combine a^{4} and -a^{4} to get 0.
-2+2a^{2}-\left(2a^{2}-1\right)^{2}+2a^{2}\left(a^{2}-3\right)
Subtract 1 from -1 to get -2.
-2+2a^{2}-\left(4\left(a^{2}\right)^{2}-4a^{2}+1\right)+2a^{2}\left(a^{2}-3\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(2a^{2}-1\right)^{2}.
-2+2a^{2}-\left(4a^{4}-4a^{2}+1\right)+2a^{2}\left(a^{2}-3\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
-2+2a^{2}-4a^{4}+4a^{2}-1+2a^{2}\left(a^{2}-3\right)
To find the opposite of 4a^{4}-4a^{2}+1, find the opposite of each term.
-2+6a^{2}-4a^{4}-1+2a^{2}\left(a^{2}-3\right)
Combine 2a^{2} and 4a^{2} to get 6a^{2}.
-3+6a^{2}-4a^{4}+2a^{2}\left(a^{2}-3\right)
Subtract 1 from -2 to get -3.
-3+6a^{2}-4a^{4}+2a^{4}-6a^{2}
Use the distributive property to multiply 2a^{2} by a^{2}-3.
-3+6a^{2}-2a^{4}-6a^{2}
Combine -4a^{4} and 2a^{4} to get -2a^{4}.
-3-2a^{4}
Combine 6a^{2} and -6a^{2} to get 0.
\left(a^{2}\right)^{2}-1-\left(a^{2}-1\right)^{2}-\left(2a^{2}-1\right)^{2}+2a^{2}\left(a^{2}-3\right)
Consider \left(a^{2}-1\right)\left(a^{2}+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
a^{4}-1-\left(a^{2}-1\right)^{2}-\left(2a^{2}-1\right)^{2}+2a^{2}\left(a^{2}-3\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
a^{4}-1-\left(\left(a^{2}\right)^{2}-2a^{2}+1\right)-\left(2a^{2}-1\right)^{2}+2a^{2}\left(a^{2}-3\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(a^{2}-1\right)^{2}.
a^{4}-1-\left(a^{4}-2a^{2}+1\right)-\left(2a^{2}-1\right)^{2}+2a^{2}\left(a^{2}-3\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
a^{4}-1-a^{4}+2a^{2}-1-\left(2a^{2}-1\right)^{2}+2a^{2}\left(a^{2}-3\right)
To find the opposite of a^{4}-2a^{2}+1, find the opposite of each term.
-1+2a^{2}-1-\left(2a^{2}-1\right)^{2}+2a^{2}\left(a^{2}-3\right)
Combine a^{4} and -a^{4} to get 0.
-2+2a^{2}-\left(2a^{2}-1\right)^{2}+2a^{2}\left(a^{2}-3\right)
Subtract 1 from -1 to get -2.
-2+2a^{2}-\left(4\left(a^{2}\right)^{2}-4a^{2}+1\right)+2a^{2}\left(a^{2}-3\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(2a^{2}-1\right)^{2}.
-2+2a^{2}-\left(4a^{4}-4a^{2}+1\right)+2a^{2}\left(a^{2}-3\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
-2+2a^{2}-4a^{4}+4a^{2}-1+2a^{2}\left(a^{2}-3\right)
To find the opposite of 4a^{4}-4a^{2}+1, find the opposite of each term.
-2+6a^{2}-4a^{4}-1+2a^{2}\left(a^{2}-3\right)
Combine 2a^{2} and 4a^{2} to get 6a^{2}.
-3+6a^{2}-4a^{4}+2a^{2}\left(a^{2}-3\right)
Subtract 1 from -2 to get -3.
-3+6a^{2}-4a^{4}+2a^{4}-6a^{2}
Use the distributive property to multiply 2a^{2} by a^{2}-3.
-3+6a^{2}-2a^{4}-6a^{2}
Combine -4a^{4} and 2a^{4} to get -2a^{4}.
-3-2a^{4}
Combine 6a^{2} and -6a^{2} to get 0.