Evaluate
-2a^{4}-3
Expand
-2a^{4}-3
Share
Copied to clipboard
\left(a^{2}\right)^{2}-1-\left(a^{2}-1\right)^{2}-\left(2a^{2}-1\right)^{2}+2a^{2}\left(a^{2}-3\right)
Consider \left(a^{2}-1\right)\left(a^{2}+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
a^{4}-1-\left(a^{2}-1\right)^{2}-\left(2a^{2}-1\right)^{2}+2a^{2}\left(a^{2}-3\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
a^{4}-1-\left(\left(a^{2}\right)^{2}-2a^{2}+1\right)-\left(2a^{2}-1\right)^{2}+2a^{2}\left(a^{2}-3\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(a^{2}-1\right)^{2}.
a^{4}-1-\left(a^{4}-2a^{2}+1\right)-\left(2a^{2}-1\right)^{2}+2a^{2}\left(a^{2}-3\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
a^{4}-1-a^{4}+2a^{2}-1-\left(2a^{2}-1\right)^{2}+2a^{2}\left(a^{2}-3\right)
To find the opposite of a^{4}-2a^{2}+1, find the opposite of each term.
-1+2a^{2}-1-\left(2a^{2}-1\right)^{2}+2a^{2}\left(a^{2}-3\right)
Combine a^{4} and -a^{4} to get 0.
-2+2a^{2}-\left(2a^{2}-1\right)^{2}+2a^{2}\left(a^{2}-3\right)
Subtract 1 from -1 to get -2.
-2+2a^{2}-\left(4\left(a^{2}\right)^{2}-4a^{2}+1\right)+2a^{2}\left(a^{2}-3\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(2a^{2}-1\right)^{2}.
-2+2a^{2}-\left(4a^{4}-4a^{2}+1\right)+2a^{2}\left(a^{2}-3\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
-2+2a^{2}-4a^{4}+4a^{2}-1+2a^{2}\left(a^{2}-3\right)
To find the opposite of 4a^{4}-4a^{2}+1, find the opposite of each term.
-2+6a^{2}-4a^{4}-1+2a^{2}\left(a^{2}-3\right)
Combine 2a^{2} and 4a^{2} to get 6a^{2}.
-3+6a^{2}-4a^{4}+2a^{2}\left(a^{2}-3\right)
Subtract 1 from -2 to get -3.
-3+6a^{2}-4a^{4}+2a^{4}-6a^{2}
Use the distributive property to multiply 2a^{2} by a^{2}-3.
-3+6a^{2}-2a^{4}-6a^{2}
Combine -4a^{4} and 2a^{4} to get -2a^{4}.
-3-2a^{4}
Combine 6a^{2} and -6a^{2} to get 0.
\left(a^{2}\right)^{2}-1-\left(a^{2}-1\right)^{2}-\left(2a^{2}-1\right)^{2}+2a^{2}\left(a^{2}-3\right)
Consider \left(a^{2}-1\right)\left(a^{2}+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
a^{4}-1-\left(a^{2}-1\right)^{2}-\left(2a^{2}-1\right)^{2}+2a^{2}\left(a^{2}-3\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
a^{4}-1-\left(\left(a^{2}\right)^{2}-2a^{2}+1\right)-\left(2a^{2}-1\right)^{2}+2a^{2}\left(a^{2}-3\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(a^{2}-1\right)^{2}.
a^{4}-1-\left(a^{4}-2a^{2}+1\right)-\left(2a^{2}-1\right)^{2}+2a^{2}\left(a^{2}-3\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
a^{4}-1-a^{4}+2a^{2}-1-\left(2a^{2}-1\right)^{2}+2a^{2}\left(a^{2}-3\right)
To find the opposite of a^{4}-2a^{2}+1, find the opposite of each term.
-1+2a^{2}-1-\left(2a^{2}-1\right)^{2}+2a^{2}\left(a^{2}-3\right)
Combine a^{4} and -a^{4} to get 0.
-2+2a^{2}-\left(2a^{2}-1\right)^{2}+2a^{2}\left(a^{2}-3\right)
Subtract 1 from -1 to get -2.
-2+2a^{2}-\left(4\left(a^{2}\right)^{2}-4a^{2}+1\right)+2a^{2}\left(a^{2}-3\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(2a^{2}-1\right)^{2}.
-2+2a^{2}-\left(4a^{4}-4a^{2}+1\right)+2a^{2}\left(a^{2}-3\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
-2+2a^{2}-4a^{4}+4a^{2}-1+2a^{2}\left(a^{2}-3\right)
To find the opposite of 4a^{4}-4a^{2}+1, find the opposite of each term.
-2+6a^{2}-4a^{4}-1+2a^{2}\left(a^{2}-3\right)
Combine 2a^{2} and 4a^{2} to get 6a^{2}.
-3+6a^{2}-4a^{4}+2a^{2}\left(a^{2}-3\right)
Subtract 1 from -2 to get -3.
-3+6a^{2}-4a^{4}+2a^{4}-6a^{2}
Use the distributive property to multiply 2a^{2} by a^{2}-3.
-3+6a^{2}-2a^{4}-6a^{2}
Combine -4a^{4} and 2a^{4} to get -2a^{4}.
-3-2a^{4}
Combine 6a^{2} and -6a^{2} to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}