Solve for a
a\in \mathrm{R}
Solve for b
b\in \mathrm{R}
Share
Copied to clipboard
a^{2}\left(a^{4}-a^{2}b^{2}\right)+a^{2}b^{4}+b^{2}\left(a^{4}-a^{2}b^{2}\right)+b^{6}+\left(a^{3}-b^{3}\right)\left(a^{3}+b^{3}\right)=2a^{6}
Use the distributive property to multiply a^{2}+b^{2} by a^{4}-a^{2}b^{2}+b^{4}.
a^{2}\left(a^{4}-a^{2}b^{2}\right)+a^{2}b^{4}+b^{2}\left(a^{4}-a^{2}b^{2}\right)+b^{6}+\left(a^{3}\right)^{2}-\left(b^{3}\right)^{2}=2a^{6}
Consider \left(a^{3}-b^{3}\right)\left(a^{3}+b^{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
a^{2}\left(a^{4}-a^{2}b^{2}\right)+a^{2}b^{4}+b^{2}\left(a^{4}-a^{2}b^{2}\right)+b^{6}+a^{6}-\left(b^{3}\right)^{2}=2a^{6}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
a^{2}\left(a^{4}-a^{2}b^{2}\right)+a^{2}b^{4}+b^{2}\left(a^{4}-a^{2}b^{2}\right)+b^{6}+a^{6}-b^{6}=2a^{6}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
a^{2}\left(a^{4}-a^{2}b^{2}\right)+a^{2}b^{4}+b^{2}\left(a^{4}-a^{2}b^{2}\right)+a^{6}=2a^{6}
Combine b^{6} and -b^{6} to get 0.
a^{2}\left(a^{4}-a^{2}b^{2}\right)+a^{2}b^{4}+b^{2}\left(a^{4}-a^{2}b^{2}\right)+a^{6}-2a^{6}=0
Subtract 2a^{6} from both sides.
a^{2}\left(a^{4}-a^{2}b^{2}\right)+a^{2}b^{4}+b^{2}\left(a^{4}-a^{2}b^{2}\right)-a^{6}=0
Combine a^{6} and -2a^{6} to get -a^{6}.
a^{6}-b^{2}a^{4}+a^{2}b^{4}+b^{2}\left(a^{4}-a^{2}b^{2}\right)-a^{6}=0
Use the distributive property to multiply a^{2} by a^{4}-a^{2}b^{2}.
a^{6}-b^{2}a^{4}+a^{2}b^{4}+b^{2}a^{4}-a^{2}b^{4}-a^{6}=0
Use the distributive property to multiply b^{2} by a^{4}-a^{2}b^{2}.
a^{6}+a^{2}b^{4}-a^{2}b^{4}-a^{6}=0
Combine -b^{2}a^{4} and b^{2}a^{4} to get 0.
a^{6}-a^{6}=0
Combine a^{2}b^{4} and -a^{2}b^{4} to get 0.
0=0
Combine a^{6} and -a^{6} to get 0.
\text{true}
Compare 0 and 0.
a\in \mathrm{R}
This is true for any a.
a^{2}\left(a^{4}-a^{2}b^{2}\right)+a^{2}b^{4}+b^{2}\left(a^{4}-a^{2}b^{2}\right)+b^{6}+\left(a^{3}-b^{3}\right)\left(a^{3}+b^{3}\right)=2a^{6}
Use the distributive property to multiply a^{2}+b^{2} by a^{4}-a^{2}b^{2}+b^{4}.
a^{2}\left(a^{4}-a^{2}b^{2}\right)+a^{2}b^{4}+b^{2}\left(a^{4}-a^{2}b^{2}\right)+b^{6}+\left(a^{3}\right)^{2}-\left(b^{3}\right)^{2}=2a^{6}
Consider \left(a^{3}-b^{3}\right)\left(a^{3}+b^{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
a^{2}\left(a^{4}-a^{2}b^{2}\right)+a^{2}b^{4}+b^{2}\left(a^{4}-a^{2}b^{2}\right)+b^{6}+a^{6}-\left(b^{3}\right)^{2}=2a^{6}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
a^{2}\left(a^{4}-a^{2}b^{2}\right)+a^{2}b^{4}+b^{2}\left(a^{4}-a^{2}b^{2}\right)+b^{6}+a^{6}-b^{6}=2a^{6}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
a^{2}\left(a^{4}-a^{2}b^{2}\right)+a^{2}b^{4}+b^{2}\left(a^{4}-a^{2}b^{2}\right)+a^{6}=2a^{6}
Combine b^{6} and -b^{6} to get 0.
a^{6}-b^{2}a^{4}+a^{2}b^{4}+b^{2}\left(a^{4}-a^{2}b^{2}\right)+a^{6}=2a^{6}
Use the distributive property to multiply a^{2} by a^{4}-a^{2}b^{2}.
a^{6}-b^{2}a^{4}+a^{2}b^{4}+b^{2}a^{4}-a^{2}b^{4}+a^{6}=2a^{6}
Use the distributive property to multiply b^{2} by a^{4}-a^{2}b^{2}.
a^{6}+a^{2}b^{4}-a^{2}b^{4}+a^{6}=2a^{6}
Combine -b^{2}a^{4} and b^{2}a^{4} to get 0.
a^{6}+a^{6}=2a^{6}
Combine a^{2}b^{4} and -a^{2}b^{4} to get 0.
2a^{6}=2a^{6}
Combine a^{6} and a^{6} to get 2a^{6}.
a^{6}=a^{6}
Cancel out 2 on both sides.
\text{true}
Reorder the terms.
b\in \mathrm{R}
This is true for any b.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}