Skip to main content
Solve for a
Tick mark Image
Solve for b
Tick mark Image

Similar Problems from Web Search

Share

a^{2}\left(a^{4}-a^{2}b^{2}\right)+a^{2}b^{4}+b^{2}\left(a^{4}-a^{2}b^{2}\right)+b^{6}+\left(a^{3}-b^{3}\right)\left(a^{3}+b^{3}\right)=2a^{6}
Use the distributive property to multiply a^{2}+b^{2} by a^{4}-a^{2}b^{2}+b^{4}.
a^{2}\left(a^{4}-a^{2}b^{2}\right)+a^{2}b^{4}+b^{2}\left(a^{4}-a^{2}b^{2}\right)+b^{6}+\left(a^{3}\right)^{2}-\left(b^{3}\right)^{2}=2a^{6}
Consider \left(a^{3}-b^{3}\right)\left(a^{3}+b^{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
a^{2}\left(a^{4}-a^{2}b^{2}\right)+a^{2}b^{4}+b^{2}\left(a^{4}-a^{2}b^{2}\right)+b^{6}+a^{6}-\left(b^{3}\right)^{2}=2a^{6}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
a^{2}\left(a^{4}-a^{2}b^{2}\right)+a^{2}b^{4}+b^{2}\left(a^{4}-a^{2}b^{2}\right)+b^{6}+a^{6}-b^{6}=2a^{6}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
a^{2}\left(a^{4}-a^{2}b^{2}\right)+a^{2}b^{4}+b^{2}\left(a^{4}-a^{2}b^{2}\right)+a^{6}=2a^{6}
Combine b^{6} and -b^{6} to get 0.
a^{2}\left(a^{4}-a^{2}b^{2}\right)+a^{2}b^{4}+b^{2}\left(a^{4}-a^{2}b^{2}\right)+a^{6}-2a^{6}=0
Subtract 2a^{6} from both sides.
a^{2}\left(a^{4}-a^{2}b^{2}\right)+a^{2}b^{4}+b^{2}\left(a^{4}-a^{2}b^{2}\right)-a^{6}=0
Combine a^{6} and -2a^{6} to get -a^{6}.
a^{6}-b^{2}a^{4}+a^{2}b^{4}+b^{2}\left(a^{4}-a^{2}b^{2}\right)-a^{6}=0
Use the distributive property to multiply a^{2} by a^{4}-a^{2}b^{2}.
a^{6}-b^{2}a^{4}+a^{2}b^{4}+b^{2}a^{4}-a^{2}b^{4}-a^{6}=0
Use the distributive property to multiply b^{2} by a^{4}-a^{2}b^{2}.
a^{6}+a^{2}b^{4}-a^{2}b^{4}-a^{6}=0
Combine -b^{2}a^{4} and b^{2}a^{4} to get 0.
a^{6}-a^{6}=0
Combine a^{2}b^{4} and -a^{2}b^{4} to get 0.
0=0
Combine a^{6} and -a^{6} to get 0.
\text{true}
Compare 0 and 0.
a\in \mathrm{R}
This is true for any a.
a^{2}\left(a^{4}-a^{2}b^{2}\right)+a^{2}b^{4}+b^{2}\left(a^{4}-a^{2}b^{2}\right)+b^{6}+\left(a^{3}-b^{3}\right)\left(a^{3}+b^{3}\right)=2a^{6}
Use the distributive property to multiply a^{2}+b^{2} by a^{4}-a^{2}b^{2}+b^{4}.
a^{2}\left(a^{4}-a^{2}b^{2}\right)+a^{2}b^{4}+b^{2}\left(a^{4}-a^{2}b^{2}\right)+b^{6}+\left(a^{3}\right)^{2}-\left(b^{3}\right)^{2}=2a^{6}
Consider \left(a^{3}-b^{3}\right)\left(a^{3}+b^{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
a^{2}\left(a^{4}-a^{2}b^{2}\right)+a^{2}b^{4}+b^{2}\left(a^{4}-a^{2}b^{2}\right)+b^{6}+a^{6}-\left(b^{3}\right)^{2}=2a^{6}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
a^{2}\left(a^{4}-a^{2}b^{2}\right)+a^{2}b^{4}+b^{2}\left(a^{4}-a^{2}b^{2}\right)+b^{6}+a^{6}-b^{6}=2a^{6}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
a^{2}\left(a^{4}-a^{2}b^{2}\right)+a^{2}b^{4}+b^{2}\left(a^{4}-a^{2}b^{2}\right)+a^{6}=2a^{6}
Combine b^{6} and -b^{6} to get 0.
a^{6}-b^{2}a^{4}+a^{2}b^{4}+b^{2}\left(a^{4}-a^{2}b^{2}\right)+a^{6}=2a^{6}
Use the distributive property to multiply a^{2} by a^{4}-a^{2}b^{2}.
a^{6}-b^{2}a^{4}+a^{2}b^{4}+b^{2}a^{4}-a^{2}b^{4}+a^{6}=2a^{6}
Use the distributive property to multiply b^{2} by a^{4}-a^{2}b^{2}.
a^{6}+a^{2}b^{4}-a^{2}b^{4}+a^{6}=2a^{6}
Combine -b^{2}a^{4} and b^{2}a^{4} to get 0.
a^{6}+a^{6}=2a^{6}
Combine a^{2}b^{4} and -a^{2}b^{4} to get 0.
2a^{6}=2a^{6}
Combine a^{6} and a^{6} to get 2a^{6}.
a^{6}=a^{6}
Cancel out 2 on both sides.
\text{true}
Reorder the terms.
b\in \mathrm{R}
This is true for any b.