Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{\left(a^{2}+a+1\right)\left(a-1\right)}{a-1}-\frac{a^{3}}{a-1}\right)\left(1+a-\frac{4a}{1+a}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply a^{2}+a+1 times \frac{a-1}{a-1}.
\frac{\left(a^{2}+a+1\right)\left(a-1\right)-a^{3}}{a-1}\left(1+a-\frac{4a}{1+a}\right)
Since \frac{\left(a^{2}+a+1\right)\left(a-1\right)}{a-1} and \frac{a^{3}}{a-1} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{3}-a^{2}+a^{2}-a+a-1-a^{3}}{a-1}\left(1+a-\frac{4a}{1+a}\right)
Do the multiplications in \left(a^{2}+a+1\right)\left(a-1\right)-a^{3}.
\frac{-1}{a-1}\left(1+a-\frac{4a}{1+a}\right)
Combine like terms in a^{3}-a^{2}+a^{2}-a+a-1-a^{3}.
\frac{-1}{a-1}\left(\frac{\left(1+a\right)\left(1+a\right)}{1+a}-\frac{4a}{1+a}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1+a times \frac{1+a}{1+a}.
\frac{-1}{a-1}\times \frac{\left(1+a\right)\left(1+a\right)-4a}{1+a}
Since \frac{\left(1+a\right)\left(1+a\right)}{1+a} and \frac{4a}{1+a} have the same denominator, subtract them by subtracting their numerators.
\frac{-1}{a-1}\times \frac{1+a+a+a^{2}-4a}{1+a}
Do the multiplications in \left(1+a\right)\left(1+a\right)-4a.
\frac{-1}{a-1}\times \frac{1-2a+a^{2}}{1+a}
Combine like terms in 1+a+a+a^{2}-4a.
\frac{-\left(1-2a+a^{2}\right)}{\left(a-1\right)\left(1+a\right)}
Multiply \frac{-1}{a-1} times \frac{1-2a+a^{2}}{1+a} by multiplying numerator times numerator and denominator times denominator.
\frac{-\left(a-1\right)^{2}}{\left(a-1\right)\left(a+1\right)}
Factor the expressions that are not already factored.
\frac{-\left(a-1\right)}{a+1}
Cancel out a-1 in both numerator and denominator.
\frac{-a+1}{a+1}
Expand the expression.
\left(\frac{\left(a^{2}+a+1\right)\left(a-1\right)}{a-1}-\frac{a^{3}}{a-1}\right)\left(1+a-\frac{4a}{1+a}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply a^{2}+a+1 times \frac{a-1}{a-1}.
\frac{\left(a^{2}+a+1\right)\left(a-1\right)-a^{3}}{a-1}\left(1+a-\frac{4a}{1+a}\right)
Since \frac{\left(a^{2}+a+1\right)\left(a-1\right)}{a-1} and \frac{a^{3}}{a-1} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{3}-a^{2}+a^{2}-a+a-1-a^{3}}{a-1}\left(1+a-\frac{4a}{1+a}\right)
Do the multiplications in \left(a^{2}+a+1\right)\left(a-1\right)-a^{3}.
\frac{-1}{a-1}\left(1+a-\frac{4a}{1+a}\right)
Combine like terms in a^{3}-a^{2}+a^{2}-a+a-1-a^{3}.
\frac{-1}{a-1}\left(\frac{\left(1+a\right)\left(1+a\right)}{1+a}-\frac{4a}{1+a}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1+a times \frac{1+a}{1+a}.
\frac{-1}{a-1}\times \frac{\left(1+a\right)\left(1+a\right)-4a}{1+a}
Since \frac{\left(1+a\right)\left(1+a\right)}{1+a} and \frac{4a}{1+a} have the same denominator, subtract them by subtracting their numerators.
\frac{-1}{a-1}\times \frac{1+a+a+a^{2}-4a}{1+a}
Do the multiplications in \left(1+a\right)\left(1+a\right)-4a.
\frac{-1}{a-1}\times \frac{1-2a+a^{2}}{1+a}
Combine like terms in 1+a+a+a^{2}-4a.
\frac{-\left(1-2a+a^{2}\right)}{\left(a-1\right)\left(1+a\right)}
Multiply \frac{-1}{a-1} times \frac{1-2a+a^{2}}{1+a} by multiplying numerator times numerator and denominator times denominator.
\frac{-\left(a-1\right)^{2}}{\left(a-1\right)\left(a+1\right)}
Factor the expressions that are not already factored.
\frac{-\left(a-1\right)}{a+1}
Cancel out a-1 in both numerator and denominator.
\frac{-a+1}{a+1}
Expand the expression.