Evaluate
-\frac{a-1}{a+1}
Expand
-\frac{a-1}{a+1}
Share
Copied to clipboard
\left(\frac{\left(a^{2}+a+1\right)\left(a-1\right)}{a-1}-\frac{a^{3}}{a-1}\right)\left(1+a-\frac{4a}{1+a}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply a^{2}+a+1 times \frac{a-1}{a-1}.
\frac{\left(a^{2}+a+1\right)\left(a-1\right)-a^{3}}{a-1}\left(1+a-\frac{4a}{1+a}\right)
Since \frac{\left(a^{2}+a+1\right)\left(a-1\right)}{a-1} and \frac{a^{3}}{a-1} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{3}-a^{2}+a^{2}-a+a-1-a^{3}}{a-1}\left(1+a-\frac{4a}{1+a}\right)
Do the multiplications in \left(a^{2}+a+1\right)\left(a-1\right)-a^{3}.
\frac{-1}{a-1}\left(1+a-\frac{4a}{1+a}\right)
Combine like terms in a^{3}-a^{2}+a^{2}-a+a-1-a^{3}.
\frac{-1}{a-1}\left(\frac{\left(1+a\right)\left(1+a\right)}{1+a}-\frac{4a}{1+a}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1+a times \frac{1+a}{1+a}.
\frac{-1}{a-1}\times \frac{\left(1+a\right)\left(1+a\right)-4a}{1+a}
Since \frac{\left(1+a\right)\left(1+a\right)}{1+a} and \frac{4a}{1+a} have the same denominator, subtract them by subtracting their numerators.
\frac{-1}{a-1}\times \frac{1+a+a+a^{2}-4a}{1+a}
Do the multiplications in \left(1+a\right)\left(1+a\right)-4a.
\frac{-1}{a-1}\times \frac{1-2a+a^{2}}{1+a}
Combine like terms in 1+a+a+a^{2}-4a.
\frac{-\left(1-2a+a^{2}\right)}{\left(a-1\right)\left(1+a\right)}
Multiply \frac{-1}{a-1} times \frac{1-2a+a^{2}}{1+a} by multiplying numerator times numerator and denominator times denominator.
\frac{-\left(a-1\right)^{2}}{\left(a-1\right)\left(a+1\right)}
Factor the expressions that are not already factored.
\frac{-\left(a-1\right)}{a+1}
Cancel out a-1 in both numerator and denominator.
\frac{-a+1}{a+1}
Expand the expression.
\left(\frac{\left(a^{2}+a+1\right)\left(a-1\right)}{a-1}-\frac{a^{3}}{a-1}\right)\left(1+a-\frac{4a}{1+a}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply a^{2}+a+1 times \frac{a-1}{a-1}.
\frac{\left(a^{2}+a+1\right)\left(a-1\right)-a^{3}}{a-1}\left(1+a-\frac{4a}{1+a}\right)
Since \frac{\left(a^{2}+a+1\right)\left(a-1\right)}{a-1} and \frac{a^{3}}{a-1} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{3}-a^{2}+a^{2}-a+a-1-a^{3}}{a-1}\left(1+a-\frac{4a}{1+a}\right)
Do the multiplications in \left(a^{2}+a+1\right)\left(a-1\right)-a^{3}.
\frac{-1}{a-1}\left(1+a-\frac{4a}{1+a}\right)
Combine like terms in a^{3}-a^{2}+a^{2}-a+a-1-a^{3}.
\frac{-1}{a-1}\left(\frac{\left(1+a\right)\left(1+a\right)}{1+a}-\frac{4a}{1+a}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1+a times \frac{1+a}{1+a}.
\frac{-1}{a-1}\times \frac{\left(1+a\right)\left(1+a\right)-4a}{1+a}
Since \frac{\left(1+a\right)\left(1+a\right)}{1+a} and \frac{4a}{1+a} have the same denominator, subtract them by subtracting their numerators.
\frac{-1}{a-1}\times \frac{1+a+a+a^{2}-4a}{1+a}
Do the multiplications in \left(1+a\right)\left(1+a\right)-4a.
\frac{-1}{a-1}\times \frac{1-2a+a^{2}}{1+a}
Combine like terms in 1+a+a+a^{2}-4a.
\frac{-\left(1-2a+a^{2}\right)}{\left(a-1\right)\left(1+a\right)}
Multiply \frac{-1}{a-1} times \frac{1-2a+a^{2}}{1+a} by multiplying numerator times numerator and denominator times denominator.
\frac{-\left(a-1\right)^{2}}{\left(a-1\right)\left(a+1\right)}
Factor the expressions that are not already factored.
\frac{-\left(a-1\right)}{a+1}
Cancel out a-1 in both numerator and denominator.
\frac{-a+1}{a+1}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}