Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

a^{2}-16a+1=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
a=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-\left(-16\right)±\sqrt{256-4}}{2}
Square -16.
a=\frac{-\left(-16\right)±\sqrt{252}}{2}
Add 256 to -4.
a=\frac{-\left(-16\right)±6\sqrt{7}}{2}
Take the square root of 252.
a=\frac{16±6\sqrt{7}}{2}
The opposite of -16 is 16.
a=\frac{6\sqrt{7}+16}{2}
Now solve the equation a=\frac{16±6\sqrt{7}}{2} when ± is plus. Add 16 to 6\sqrt{7}.
a=3\sqrt{7}+8
Divide 16+6\sqrt{7} by 2.
a=\frac{16-6\sqrt{7}}{2}
Now solve the equation a=\frac{16±6\sqrt{7}}{2} when ± is minus. Subtract 6\sqrt{7} from 16.
a=8-3\sqrt{7}
Divide 16-6\sqrt{7} by 2.
a^{2}-16a+1=\left(a-\left(3\sqrt{7}+8\right)\right)\left(a-\left(8-3\sqrt{7}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 8+3\sqrt{7} for x_{1} and 8-3\sqrt{7} for x_{2}.