Evaluate
\frac{1}{c}
Expand
\frac{1}{c}
Share
Copied to clipboard
\left(a^{-2}\right)^{-2}\left(b^{6}\right)^{-2}\left(c^{-2}\right)^{-2}\left(a^{-1}b^{3}c^{-\frac{5}{4}}\right)^{4}
Expand \left(a^{-2}b^{6}c^{-2}\right)^{-2}.
a^{4}\left(b^{6}\right)^{-2}\left(c^{-2}\right)^{-2}\left(a^{-1}b^{3}c^{-\frac{5}{4}}\right)^{4}
To raise a power to another power, multiply the exponents. Multiply -2 and -2 to get 4.
a^{4}b^{-12}\left(c^{-2}\right)^{-2}\left(a^{-1}b^{3}c^{-\frac{5}{4}}\right)^{4}
To raise a power to another power, multiply the exponents. Multiply 6 and -2 to get -12.
a^{4}b^{-12}c^{4}\left(a^{-1}b^{3}c^{-\frac{5}{4}}\right)^{4}
To raise a power to another power, multiply the exponents. Multiply -2 and -2 to get 4.
a^{4}b^{-12}c^{4}\left(a^{-1}\right)^{4}\left(b^{3}\right)^{4}\left(c^{-\frac{5}{4}}\right)^{4}
Expand \left(a^{-1}b^{3}c^{-\frac{5}{4}}\right)^{4}.
a^{4}b^{-12}c^{4}a^{-4}\left(b^{3}\right)^{4}\left(c^{-\frac{5}{4}}\right)^{4}
To raise a power to another power, multiply the exponents. Multiply -1 and 4 to get -4.
a^{4}b^{-12}c^{4}a^{-4}b^{12}\left(c^{-\frac{5}{4}}\right)^{4}
To raise a power to another power, multiply the exponents. Multiply 3 and 4 to get 12.
a^{4}b^{-12}c^{4}a^{-4}b^{12}c^{-5}
To raise a power to another power, multiply the exponents. Multiply -\frac{5}{4} and 4 to get -5.
b^{-12}c^{4}b^{12}c^{-5}
Multiply a^{4} and a^{-4} to get 1.
c^{4}c^{-5}
Multiply b^{-12} and b^{12} to get 1.
c^{-1}
To multiply powers of the same base, add their exponents. Add 4 and -5 to get -1.
\left(a^{-2}\right)^{-2}\left(b^{6}\right)^{-2}\left(c^{-2}\right)^{-2}\left(a^{-1}b^{3}c^{-\frac{5}{4}}\right)^{4}
Expand \left(a^{-2}b^{6}c^{-2}\right)^{-2}.
a^{4}\left(b^{6}\right)^{-2}\left(c^{-2}\right)^{-2}\left(a^{-1}b^{3}c^{-\frac{5}{4}}\right)^{4}
To raise a power to another power, multiply the exponents. Multiply -2 and -2 to get 4.
a^{4}b^{-12}\left(c^{-2}\right)^{-2}\left(a^{-1}b^{3}c^{-\frac{5}{4}}\right)^{4}
To raise a power to another power, multiply the exponents. Multiply 6 and -2 to get -12.
a^{4}b^{-12}c^{4}\left(a^{-1}b^{3}c^{-\frac{5}{4}}\right)^{4}
To raise a power to another power, multiply the exponents. Multiply -2 and -2 to get 4.
a^{4}b^{-12}c^{4}\left(a^{-1}\right)^{4}\left(b^{3}\right)^{4}\left(c^{-\frac{5}{4}}\right)^{4}
Expand \left(a^{-1}b^{3}c^{-\frac{5}{4}}\right)^{4}.
a^{4}b^{-12}c^{4}a^{-4}\left(b^{3}\right)^{4}\left(c^{-\frac{5}{4}}\right)^{4}
To raise a power to another power, multiply the exponents. Multiply -1 and 4 to get -4.
a^{4}b^{-12}c^{4}a^{-4}b^{12}\left(c^{-\frac{5}{4}}\right)^{4}
To raise a power to another power, multiply the exponents. Multiply 3 and 4 to get 12.
a^{4}b^{-12}c^{4}a^{-4}b^{12}c^{-5}
To raise a power to another power, multiply the exponents. Multiply -\frac{5}{4} and 4 to get -5.
b^{-12}c^{4}b^{12}c^{-5}
Multiply a^{4} and a^{-4} to get 1.
c^{4}c^{-5}
Multiply b^{-12} and b^{12} to get 1.
c^{-1}
To multiply powers of the same base, add their exponents. Add 4 and -5 to get -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}