Skip to main content
Solve for a (complex solution)
Tick mark Image
Solve for b (complex solution)
Tick mark Image
Solve for a
Tick mark Image
Solve for b
Tick mark Image

Similar Problems from Web Search

Share

a^{3}-ab^{2}+ba^{2}-b^{3}=\left(a-b\right)\left(a+b\right)^{2}
Use the distributive property to multiply a+b by a^{2}-b^{2}.
a^{3}-ab^{2}+ba^{2}-b^{3}=\left(a-b\right)\left(a^{2}+2ab+b^{2}\right)
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(a+b\right)^{2}.
a^{3}-ab^{2}+ba^{2}-b^{3}=a^{3}+ba^{2}-ab^{2}-b^{3}
Use the distributive property to multiply a-b by a^{2}+2ab+b^{2} and combine like terms.
a^{3}-ab^{2}+ba^{2}-b^{3}-a^{3}=ba^{2}-ab^{2}-b^{3}
Subtract a^{3} from both sides.
-ab^{2}+ba^{2}-b^{3}=ba^{2}-ab^{2}-b^{3}
Combine a^{3} and -a^{3} to get 0.
-ab^{2}+ba^{2}-b^{3}-ba^{2}=-ab^{2}-b^{3}
Subtract ba^{2} from both sides.
-ab^{2}-b^{3}=-ab^{2}-b^{3}
Combine ba^{2} and -ba^{2} to get 0.
-ab^{2}-b^{3}+ab^{2}=-b^{3}
Add ab^{2} to both sides.
-b^{3}=-b^{3}
Combine -ab^{2} and ab^{2} to get 0.
b^{3}=b^{3}
Cancel out -1 on both sides.
\text{true}
Reorder the terms.
a\in \mathrm{C}
This is true for any a.
a^{3}-ab^{2}+ba^{2}-b^{3}=\left(a-b\right)\left(a+b\right)^{2}
Use the distributive property to multiply a+b by a^{2}-b^{2}.
a^{3}-ab^{2}+ba^{2}-b^{3}=\left(a-b\right)\left(a^{2}+2ab+b^{2}\right)
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(a+b\right)^{2}.
a^{3}-ab^{2}+ba^{2}-b^{3}=a^{3}+ba^{2}-ab^{2}-b^{3}
Use the distributive property to multiply a-b by a^{2}+2ab+b^{2} and combine like terms.
a^{3}-ab^{2}+ba^{2}-b^{3}-ba^{2}=a^{3}-ab^{2}-b^{3}
Subtract ba^{2} from both sides.
a^{3}-ab^{2}-b^{3}=a^{3}-ab^{2}-b^{3}
Combine ba^{2} and -ba^{2} to get 0.
a^{3}-ab^{2}-b^{3}+ab^{2}=a^{3}-b^{3}
Add ab^{2} to both sides.
a^{3}-b^{3}=a^{3}-b^{3}
Combine -ab^{2} and ab^{2} to get 0.
a^{3}-b^{3}+b^{3}=a^{3}
Add b^{3} to both sides.
a^{3}=a^{3}
Combine -b^{3} and b^{3} to get 0.
\text{true}
Reorder the terms.
b\in \mathrm{C}
This is true for any b.
a^{3}-ab^{2}+ba^{2}-b^{3}=\left(a-b\right)\left(a+b\right)^{2}
Use the distributive property to multiply a+b by a^{2}-b^{2}.
a^{3}-ab^{2}+ba^{2}-b^{3}=\left(a-b\right)\left(a^{2}+2ab+b^{2}\right)
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(a+b\right)^{2}.
a^{3}-ab^{2}+ba^{2}-b^{3}=a^{3}+ba^{2}-ab^{2}-b^{3}
Use the distributive property to multiply a-b by a^{2}+2ab+b^{2} and combine like terms.
a^{3}-ab^{2}+ba^{2}-b^{3}-a^{3}=ba^{2}-ab^{2}-b^{3}
Subtract a^{3} from both sides.
-ab^{2}+ba^{2}-b^{3}=ba^{2}-ab^{2}-b^{3}
Combine a^{3} and -a^{3} to get 0.
-ab^{2}+ba^{2}-b^{3}-ba^{2}=-ab^{2}-b^{3}
Subtract ba^{2} from both sides.
-ab^{2}-b^{3}=-ab^{2}-b^{3}
Combine ba^{2} and -ba^{2} to get 0.
-ab^{2}-b^{3}+ab^{2}=-b^{3}
Add ab^{2} to both sides.
-b^{3}=-b^{3}
Combine -ab^{2} and ab^{2} to get 0.
b^{3}=b^{3}
Cancel out -1 on both sides.
\text{true}
Reorder the terms.
a\in \mathrm{R}
This is true for any a.
a^{3}-ab^{2}+ba^{2}-b^{3}=\left(a-b\right)\left(a+b\right)^{2}
Use the distributive property to multiply a+b by a^{2}-b^{2}.
a^{3}-ab^{2}+ba^{2}-b^{3}=\left(a-b\right)\left(a^{2}+2ab+b^{2}\right)
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(a+b\right)^{2}.
a^{3}-ab^{2}+ba^{2}-b^{3}=a^{3}+ba^{2}-ab^{2}-b^{3}
Use the distributive property to multiply a-b by a^{2}+2ab+b^{2} and combine like terms.
a^{3}-ab^{2}+ba^{2}-b^{3}-ba^{2}=a^{3}-ab^{2}-b^{3}
Subtract ba^{2} from both sides.
a^{3}-ab^{2}-b^{3}=a^{3}-ab^{2}-b^{3}
Combine ba^{2} and -ba^{2} to get 0.
a^{3}-ab^{2}-b^{3}+ab^{2}=a^{3}-b^{3}
Add ab^{2} to both sides.
a^{3}-b^{3}=a^{3}-b^{3}
Combine -ab^{2} and ab^{2} to get 0.
a^{3}-b^{3}+b^{3}=a^{3}
Add b^{3} to both sides.
a^{3}=a^{3}
Combine -b^{3} and b^{3} to get 0.
\text{true}
Reorder the terms.
b\in \mathrm{R}
This is true for any b.