Evaluate
c+b+a+ac-2a^{2}
Expand
c+b+a+ac-2a^{2}
Share
Copied to clipboard
a+b+c-\left(2a^{2}+ab-2ba-b^{2}-2ca-cb\right)-\left(b+c\right)\left(a+b\right)
Apply the distributive property by multiplying each term of a-b-c by each term of 2a+b.
a+b+c-\left(2a^{2}-ab-b^{2}-2ca-cb\right)-\left(b+c\right)\left(a+b\right)
Combine ab and -2ba to get -ab.
a+b+c-2a^{2}-\left(-ab\right)-\left(-b^{2}\right)-\left(-2ca\right)-\left(-cb\right)-\left(b+c\right)\left(a+b\right)
To find the opposite of 2a^{2}-ab-b^{2}-2ca-cb, find the opposite of each term.
a+b+c-2a^{2}+ab-\left(-b^{2}\right)-\left(-2ca\right)-\left(-cb\right)-\left(b+c\right)\left(a+b\right)
The opposite of -ab is ab.
a+b+c-2a^{2}+ab+b^{2}-\left(-2ca\right)-\left(-cb\right)-\left(b+c\right)\left(a+b\right)
The opposite of -b^{2} is b^{2}.
a+b+c-2a^{2}+ab+b^{2}+2ca-\left(-cb\right)-\left(b+c\right)\left(a+b\right)
The opposite of -2ca is 2ca.
a+b+c-2a^{2}+ab+b^{2}+2ca+cb-\left(b+c\right)\left(a+b\right)
The opposite of -cb is cb.
a+b+c-2a^{2}+ab+b^{2}+2ca+cb-\left(ba+b^{2}+ca+cb\right)
Apply the distributive property by multiplying each term of b+c by each term of a+b.
a+b+c-2a^{2}+ab+b^{2}+2ca+cb-ba-b^{2}-ca-cb
To find the opposite of ba+b^{2}+ca+cb, find the opposite of each term.
a+b+c-2a^{2}+b^{2}+2ca+cb-b^{2}-ca-cb
Combine ab and -ba to get 0.
a+b+c-2a^{2}+2ca+cb-ca-cb
Combine b^{2} and -b^{2} to get 0.
a+b+c-2a^{2}+ca+cb-cb
Combine 2ca and -ca to get ca.
a+b+c-2a^{2}+ca
Combine cb and -cb to get 0.
a+b+c-\left(2a^{2}+ab-2ba-b^{2}-2ca-cb\right)-\left(b+c\right)\left(a+b\right)
Apply the distributive property by multiplying each term of a-b-c by each term of 2a+b.
a+b+c-\left(2a^{2}-ab-b^{2}-2ca-cb\right)-\left(b+c\right)\left(a+b\right)
Combine ab and -2ba to get -ab.
a+b+c-2a^{2}-\left(-ab\right)-\left(-b^{2}\right)-\left(-2ca\right)-\left(-cb\right)-\left(b+c\right)\left(a+b\right)
To find the opposite of 2a^{2}-ab-b^{2}-2ca-cb, find the opposite of each term.
a+b+c-2a^{2}+ab-\left(-b^{2}\right)-\left(-2ca\right)-\left(-cb\right)-\left(b+c\right)\left(a+b\right)
The opposite of -ab is ab.
a+b+c-2a^{2}+ab+b^{2}-\left(-2ca\right)-\left(-cb\right)-\left(b+c\right)\left(a+b\right)
The opposite of -b^{2} is b^{2}.
a+b+c-2a^{2}+ab+b^{2}+2ca-\left(-cb\right)-\left(b+c\right)\left(a+b\right)
The opposite of -2ca is 2ca.
a+b+c-2a^{2}+ab+b^{2}+2ca+cb-\left(b+c\right)\left(a+b\right)
The opposite of -cb is cb.
a+b+c-2a^{2}+ab+b^{2}+2ca+cb-\left(ba+b^{2}+ca+cb\right)
Apply the distributive property by multiplying each term of b+c by each term of a+b.
a+b+c-2a^{2}+ab+b^{2}+2ca+cb-ba-b^{2}-ca-cb
To find the opposite of ba+b^{2}+ca+cb, find the opposite of each term.
a+b+c-2a^{2}+b^{2}+2ca+cb-b^{2}-ca-cb
Combine ab and -ba to get 0.
a+b+c-2a^{2}+2ca+cb-ca-cb
Combine b^{2} and -b^{2} to get 0.
a+b+c-2a^{2}+ca+cb-cb
Combine 2ca and -ca to get ca.
a+b+c-2a^{2}+ca
Combine cb and -cb to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}