Skip to main content
Solve for a (complex solution)
Tick mark Image
Solve for b (complex solution)
Tick mark Image
Solve for a
Tick mark Image
Solve for b
Tick mark Image

Similar Problems from Web Search

Share

a^{2}+4ab+4b^{2}+\left(2a-b\right)^{2}=5\left(a^{2}+b^{2}\right)
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(a+2b\right)^{2}.
a^{2}+4ab+4b^{2}+4a^{2}-4ab+b^{2}=5\left(a^{2}+b^{2}\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(2a-b\right)^{2}.
5a^{2}+4ab+4b^{2}-4ab+b^{2}=5\left(a^{2}+b^{2}\right)
Combine a^{2} and 4a^{2} to get 5a^{2}.
5a^{2}+4b^{2}+b^{2}=5\left(a^{2}+b^{2}\right)
Combine 4ab and -4ab to get 0.
5a^{2}+5b^{2}=5\left(a^{2}+b^{2}\right)
Combine 4b^{2} and b^{2} to get 5b^{2}.
5a^{2}+5b^{2}=5a^{2}+5b^{2}
Use the distributive property to multiply 5 by a^{2}+b^{2}.
5a^{2}+5b^{2}-5a^{2}=5b^{2}
Subtract 5a^{2} from both sides.
5b^{2}=5b^{2}
Combine 5a^{2} and -5a^{2} to get 0.
b^{2}=b^{2}
Cancel out 5 on both sides.
\text{true}
Reorder the terms.
a\in \mathrm{C}
This is true for any a.
a^{2}+4ab+4b^{2}+\left(2a-b\right)^{2}=5\left(a^{2}+b^{2}\right)
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(a+2b\right)^{2}.
a^{2}+4ab+4b^{2}+4a^{2}-4ab+b^{2}=5\left(a^{2}+b^{2}\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(2a-b\right)^{2}.
5a^{2}+4ab+4b^{2}-4ab+b^{2}=5\left(a^{2}+b^{2}\right)
Combine a^{2} and 4a^{2} to get 5a^{2}.
5a^{2}+4b^{2}+b^{2}=5\left(a^{2}+b^{2}\right)
Combine 4ab and -4ab to get 0.
5a^{2}+5b^{2}=5\left(a^{2}+b^{2}\right)
Combine 4b^{2} and b^{2} to get 5b^{2}.
5a^{2}+5b^{2}=5a^{2}+5b^{2}
Use the distributive property to multiply 5 by a^{2}+b^{2}.
5a^{2}+5b^{2}-5b^{2}=5a^{2}
Subtract 5b^{2} from both sides.
5a^{2}=5a^{2}
Combine 5b^{2} and -5b^{2} to get 0.
a^{2}=a^{2}
Cancel out 5 on both sides.
\text{true}
Reorder the terms.
b\in \mathrm{C}
This is true for any b.
a^{2}+4ab+4b^{2}+\left(2a-b\right)^{2}=5\left(a^{2}+b^{2}\right)
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(a+2b\right)^{2}.
a^{2}+4ab+4b^{2}+4a^{2}-4ab+b^{2}=5\left(a^{2}+b^{2}\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(2a-b\right)^{2}.
5a^{2}+4ab+4b^{2}-4ab+b^{2}=5\left(a^{2}+b^{2}\right)
Combine a^{2} and 4a^{2} to get 5a^{2}.
5a^{2}+4b^{2}+b^{2}=5\left(a^{2}+b^{2}\right)
Combine 4ab and -4ab to get 0.
5a^{2}+5b^{2}=5\left(a^{2}+b^{2}\right)
Combine 4b^{2} and b^{2} to get 5b^{2}.
5a^{2}+5b^{2}=5a^{2}+5b^{2}
Use the distributive property to multiply 5 by a^{2}+b^{2}.
5a^{2}+5b^{2}-5a^{2}=5b^{2}
Subtract 5a^{2} from both sides.
5b^{2}=5b^{2}
Combine 5a^{2} and -5a^{2} to get 0.
b^{2}=b^{2}
Cancel out 5 on both sides.
\text{true}
Reorder the terms.
a\in \mathrm{R}
This is true for any a.
a^{2}+4ab+4b^{2}+\left(2a-b\right)^{2}=5\left(a^{2}+b^{2}\right)
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(a+2b\right)^{2}.
a^{2}+4ab+4b^{2}+4a^{2}-4ab+b^{2}=5\left(a^{2}+b^{2}\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(2a-b\right)^{2}.
5a^{2}+4ab+4b^{2}-4ab+b^{2}=5\left(a^{2}+b^{2}\right)
Combine a^{2} and 4a^{2} to get 5a^{2}.
5a^{2}+4b^{2}+b^{2}=5\left(a^{2}+b^{2}\right)
Combine 4ab and -4ab to get 0.
5a^{2}+5b^{2}=5\left(a^{2}+b^{2}\right)
Combine 4b^{2} and b^{2} to get 5b^{2}.
5a^{2}+5b^{2}=5a^{2}+5b^{2}
Use the distributive property to multiply 5 by a^{2}+b^{2}.
5a^{2}+5b^{2}-5b^{2}=5a^{2}
Subtract 5b^{2} from both sides.
5a^{2}=5a^{2}
Combine 5b^{2} and -5b^{2} to get 0.
a^{2}=a^{2}
Cancel out 5 on both sides.
\text{true}
Reorder the terms.
b\in \mathrm{R}
This is true for any b.