Skip to main content
Solve for X
Tick mark Image

Similar Problems from Web Search

Share

X^{2}-18X+81=36
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(X-9\right)^{2}.
X^{2}-18X+81-36=0
Subtract 36 from both sides.
X^{2}-18X+45=0
Subtract 36 from 81 to get 45.
a+b=-18 ab=45
To solve the equation, factor X^{2}-18X+45 using formula X^{2}+\left(a+b\right)X+ab=\left(X+a\right)\left(X+b\right). To find a and b, set up a system to be solved.
-1,-45 -3,-15 -5,-9
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 45.
-1-45=-46 -3-15=-18 -5-9=-14
Calculate the sum for each pair.
a=-15 b=-3
The solution is the pair that gives sum -18.
\left(X-15\right)\left(X-3\right)
Rewrite factored expression \left(X+a\right)\left(X+b\right) using the obtained values.
X=15 X=3
To find equation solutions, solve X-15=0 and X-3=0.
X^{2}-18X+81=36
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(X-9\right)^{2}.
X^{2}-18X+81-36=0
Subtract 36 from both sides.
X^{2}-18X+45=0
Subtract 36 from 81 to get 45.
a+b=-18 ab=1\times 45=45
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as X^{2}+aX+bX+45. To find a and b, set up a system to be solved.
-1,-45 -3,-15 -5,-9
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 45.
-1-45=-46 -3-15=-18 -5-9=-14
Calculate the sum for each pair.
a=-15 b=-3
The solution is the pair that gives sum -18.
\left(X^{2}-15X\right)+\left(-3X+45\right)
Rewrite X^{2}-18X+45 as \left(X^{2}-15X\right)+\left(-3X+45\right).
X\left(X-15\right)-3\left(X-15\right)
Factor out X in the first and -3 in the second group.
\left(X-15\right)\left(X-3\right)
Factor out common term X-15 by using distributive property.
X=15 X=3
To find equation solutions, solve X-15=0 and X-3=0.
X^{2}-18X+81=36
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(X-9\right)^{2}.
X^{2}-18X+81-36=0
Subtract 36 from both sides.
X^{2}-18X+45=0
Subtract 36 from 81 to get 45.
X=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\times 45}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -18 for b, and 45 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
X=\frac{-\left(-18\right)±\sqrt{324-4\times 45}}{2}
Square -18.
X=\frac{-\left(-18\right)±\sqrt{324-180}}{2}
Multiply -4 times 45.
X=\frac{-\left(-18\right)±\sqrt{144}}{2}
Add 324 to -180.
X=\frac{-\left(-18\right)±12}{2}
Take the square root of 144.
X=\frac{18±12}{2}
The opposite of -18 is 18.
X=\frac{30}{2}
Now solve the equation X=\frac{18±12}{2} when ± is plus. Add 18 to 12.
X=15
Divide 30 by 2.
X=\frac{6}{2}
Now solve the equation X=\frac{18±12}{2} when ± is minus. Subtract 12 from 18.
X=3
Divide 6 by 2.
X=15 X=3
The equation is now solved.
\sqrt{\left(X-9\right)^{2}}=\sqrt{36}
Take the square root of both sides of the equation.
X-9=6 X-9=-6
Simplify.
X=15 X=3
Add 9 to both sides of the equation.