Evaluate
\frac{3R_{66300}}{5}
Differentiate w.r.t. R_66300
\frac{3}{5} = 0.6
Share
Copied to clipboard
\frac{R_{66300}\times 10}{5}\times \frac{3}{10}
Divide R_{66300} by \frac{5}{10} by multiplying R_{66300} by the reciprocal of \frac{5}{10}.
R_{66300}\times 2\times \frac{3}{10}
Divide R_{66300}\times 10 by 5 to get R_{66300}\times 2.
R_{66300}\times \frac{2\times 3}{10}
Express 2\times \frac{3}{10} as a single fraction.
R_{66300}\times \frac{6}{10}
Multiply 2 and 3 to get 6.
R_{66300}\times \frac{3}{5}
Reduce the fraction \frac{6}{10} to lowest terms by extracting and canceling out 2.
\frac{\mathrm{d}}{\mathrm{d}R_{66300}}(\frac{R_{66300}\times 10}{5}\times \frac{3}{10})
Divide R_{66300} by \frac{5}{10} by multiplying R_{66300} by the reciprocal of \frac{5}{10}.
\frac{\mathrm{d}}{\mathrm{d}R_{66300}}(R_{66300}\times 2\times \frac{3}{10})
Divide R_{66300}\times 10 by 5 to get R_{66300}\times 2.
\frac{\mathrm{d}}{\mathrm{d}R_{66300}}(R_{66300}\times \frac{2\times 3}{10})
Express 2\times \frac{3}{10} as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}R_{66300}}(R_{66300}\times \frac{6}{10})
Multiply 2 and 3 to get 6.
\frac{\mathrm{d}}{\mathrm{d}R_{66300}}(R_{66300}\times \frac{3}{5})
Reduce the fraction \frac{6}{10} to lowest terms by extracting and canceling out 2.
\frac{3}{5}R_{66300}^{1-1}
The derivative of ax^{n} is nax^{n-1}.
\frac{3}{5}R_{66300}^{0}
Subtract 1 from 1.
\frac{3}{5}\times 1
For any term t except 0, t^{0}=1.
\frac{3}{5}
For any term t, t\times 1=t and 1t=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}