Solve for L
L=6\sqrt{6}-3\approx 11.696938457
L=-6\sqrt{6}-3\approx -17.696938457
Share
Copied to clipboard
L^{2}+6L+9+3^{2}=15^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(L+3\right)^{2}.
L^{2}+6L+9+9=15^{2}
Calculate 3 to the power of 2 and get 9.
L^{2}+6L+18=15^{2}
Add 9 and 9 to get 18.
L^{2}+6L+18=225
Calculate 15 to the power of 2 and get 225.
L^{2}+6L+18-225=0
Subtract 225 from both sides.
L^{2}+6L-207=0
Subtract 225 from 18 to get -207.
L=\frac{-6±\sqrt{6^{2}-4\left(-207\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 6 for b, and -207 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
L=\frac{-6±\sqrt{36-4\left(-207\right)}}{2}
Square 6.
L=\frac{-6±\sqrt{36+828}}{2}
Multiply -4 times -207.
L=\frac{-6±\sqrt{864}}{2}
Add 36 to 828.
L=\frac{-6±12\sqrt{6}}{2}
Take the square root of 864.
L=\frac{12\sqrt{6}-6}{2}
Now solve the equation L=\frac{-6±12\sqrt{6}}{2} when ± is plus. Add -6 to 12\sqrt{6}.
L=6\sqrt{6}-3
Divide -6+12\sqrt{6} by 2.
L=\frac{-12\sqrt{6}-6}{2}
Now solve the equation L=\frac{-6±12\sqrt{6}}{2} when ± is minus. Subtract 12\sqrt{6} from -6.
L=-6\sqrt{6}-3
Divide -6-12\sqrt{6} by 2.
L=6\sqrt{6}-3 L=-6\sqrt{6}-3
The equation is now solved.
L^{2}+6L+9+3^{2}=15^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(L+3\right)^{2}.
L^{2}+6L+9+9=15^{2}
Calculate 3 to the power of 2 and get 9.
L^{2}+6L+18=15^{2}
Add 9 and 9 to get 18.
L^{2}+6L+18=225
Calculate 15 to the power of 2 and get 225.
L^{2}+6L=225-18
Subtract 18 from both sides.
L^{2}+6L=207
Subtract 18 from 225 to get 207.
L^{2}+6L+3^{2}=207+3^{2}
Divide 6, the coefficient of the x term, by 2 to get 3. Then add the square of 3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
L^{2}+6L+9=207+9
Square 3.
L^{2}+6L+9=216
Add 207 to 9.
\left(L+3\right)^{2}=216
Factor L^{2}+6L+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(L+3\right)^{2}}=\sqrt{216}
Take the square root of both sides of the equation.
L+3=6\sqrt{6} L+3=-6\sqrt{6}
Simplify.
L=6\sqrt{6}-3 L=-6\sqrt{6}-3
Subtract 3 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}