Solve for E_3
E_{3}=-\frac{25f}{x}
f\neq 0\text{ and }x\neq 0
Solve for f
f=-\frac{E_{3}x}{25}
x\neq 0\text{ and }E_{3}\neq 0
Graph
Share
Copied to clipboard
E_{3}x=-25f
Multiply both sides of the equation by f.
xE_{3}=-25f
The equation is in standard form.
\frac{xE_{3}}{x}=-\frac{25f}{x}
Divide both sides by x.
E_{3}=-\frac{25f}{x}
Dividing by x undoes the multiplication by x.
E_{3}x=-25f
Variable f cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by f.
-25f=E_{3}x
Swap sides so that all variable terms are on the left hand side.
\frac{-25f}{-25}=\frac{E_{3}x}{-25}
Divide both sides by -25.
f=\frac{E_{3}x}{-25}
Dividing by -25 undoes the multiplication by -25.
f=-\frac{E_{3}x}{25}
Divide E_{3}x by -25.
f=-\frac{E_{3}x}{25}\text{, }f\neq 0
Variable f cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}