Solve for D (complex solution)
\left\{\begin{matrix}D=\frac{\sqrt{y\left(y+2e^{\left(1-2i\right)x}+2e^{\left(1+2i\right)x}\right)}-5y}{2y}\text{; }D=-\frac{\sqrt{y\left(y+2e^{\left(1-2i\right)x}+2e^{\left(1+2i\right)x}\right)}+5y}{2y}\text{, }&y\neq 0\\D\in \mathrm{C}\text{, }&\frac{-e^{\left(1-2i\right)x}-e^{\left(1+2i\right)x}}{2}=0\text{ and }y=0\end{matrix}\right.
Solve for D
\left\{\begin{matrix}D=\frac{\sqrt{y\left(4\cos(2x)e^{x}+y\right)}-5y}{2y}\text{; }D=-\frac{\sqrt{y\left(4\cos(2x)e^{x}+y\right)}+5y}{2y}\text{, }&\left(\nexists n_{1}\in \mathrm{Z}\text{ : }x=\frac{\pi \left(2n_{1}+1\right)}{4}\text{ and }y=-4\cos(2x)e^{x}\right)\text{ or }\left(y\leq -4\cos(2x)e^{x}\text{ and }y<0\right)\text{ or }\left(y\geq -4\cos(2x)e^{x}\text{ and }y>0\right)\\D\in \mathrm{R}\text{, }&\exists n_{1}\in \mathrm{Z}\text{ : }x=\frac{\pi n_{1}}{2}+\frac{\pi }{4}\text{ and }y=0\end{matrix}\right.
Graph
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}