Skip to main content
Solve for A
Tick mark Image
Solve for D
Tick mark Image

Similar Problems from Web Search

Share

A^{2}D^{2}-20AD+100=\left(15-AD\right)^{2}-25
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(AD-10\right)^{2}.
A^{2}D^{2}-20AD+100=225-30AD+A^{2}D^{2}-25
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(15-AD\right)^{2}.
A^{2}D^{2}-20AD+100=200-30AD+A^{2}D^{2}
Subtract 25 from 225 to get 200.
A^{2}D^{2}-20AD+100+30AD=200+A^{2}D^{2}
Add 30AD to both sides.
A^{2}D^{2}+10AD+100=200+A^{2}D^{2}
Combine -20AD and 30AD to get 10AD.
A^{2}D^{2}+10AD+100-A^{2}D^{2}=200
Subtract A^{2}D^{2} from both sides.
10AD+100=200
Combine A^{2}D^{2} and -A^{2}D^{2} to get 0.
10AD=200-100
Subtract 100 from both sides.
10AD=100
Subtract 100 from 200 to get 100.
10DA=100
The equation is in standard form.
\frac{10DA}{10D}=\frac{100}{10D}
Divide both sides by 10D.
A=\frac{100}{10D}
Dividing by 10D undoes the multiplication by 10D.
A=\frac{10}{D}
Divide 100 by 10D.
A^{2}D^{2}-20AD+100=\left(15-AD\right)^{2}-25
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(AD-10\right)^{2}.
A^{2}D^{2}-20AD+100=225-30AD+A^{2}D^{2}-25
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(15-AD\right)^{2}.
A^{2}D^{2}-20AD+100=200-30AD+A^{2}D^{2}
Subtract 25 from 225 to get 200.
A^{2}D^{2}-20AD+100+30AD=200+A^{2}D^{2}
Add 30AD to both sides.
A^{2}D^{2}+10AD+100=200+A^{2}D^{2}
Combine -20AD and 30AD to get 10AD.
A^{2}D^{2}+10AD+100-A^{2}D^{2}=200
Subtract A^{2}D^{2} from both sides.
10AD+100=200
Combine A^{2}D^{2} and -A^{2}D^{2} to get 0.
10AD=200-100
Subtract 100 from both sides.
10AD=100
Subtract 100 from 200 to get 100.
\frac{10AD}{10A}=\frac{100}{10A}
Divide both sides by 10A.
D=\frac{100}{10A}
Dividing by 10A undoes the multiplication by 10A.
D=\frac{10}{A}
Divide 100 by 10A.