Solve for A
A=\frac{10}{D}
D\neq 0
Solve for D
D=\frac{10}{A}
A\neq 0
Share
Copied to clipboard
A^{2}D^{2}-20AD+100=\left(15-AD\right)^{2}-25
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(AD-10\right)^{2}.
A^{2}D^{2}-20AD+100=225-30AD+A^{2}D^{2}-25
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(15-AD\right)^{2}.
A^{2}D^{2}-20AD+100=200-30AD+A^{2}D^{2}
Subtract 25 from 225 to get 200.
A^{2}D^{2}-20AD+100+30AD=200+A^{2}D^{2}
Add 30AD to both sides.
A^{2}D^{2}+10AD+100=200+A^{2}D^{2}
Combine -20AD and 30AD to get 10AD.
A^{2}D^{2}+10AD+100-A^{2}D^{2}=200
Subtract A^{2}D^{2} from both sides.
10AD+100=200
Combine A^{2}D^{2} and -A^{2}D^{2} to get 0.
10AD=200-100
Subtract 100 from both sides.
10AD=100
Subtract 100 from 200 to get 100.
10DA=100
The equation is in standard form.
\frac{10DA}{10D}=\frac{100}{10D}
Divide both sides by 10D.
A=\frac{100}{10D}
Dividing by 10D undoes the multiplication by 10D.
A=\frac{10}{D}
Divide 100 by 10D.
A^{2}D^{2}-20AD+100=\left(15-AD\right)^{2}-25
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(AD-10\right)^{2}.
A^{2}D^{2}-20AD+100=225-30AD+A^{2}D^{2}-25
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(15-AD\right)^{2}.
A^{2}D^{2}-20AD+100=200-30AD+A^{2}D^{2}
Subtract 25 from 225 to get 200.
A^{2}D^{2}-20AD+100+30AD=200+A^{2}D^{2}
Add 30AD to both sides.
A^{2}D^{2}+10AD+100=200+A^{2}D^{2}
Combine -20AD and 30AD to get 10AD.
A^{2}D^{2}+10AD+100-A^{2}D^{2}=200
Subtract A^{2}D^{2} from both sides.
10AD+100=200
Combine A^{2}D^{2} and -A^{2}D^{2} to get 0.
10AD=200-100
Subtract 100 from both sides.
10AD=100
Subtract 100 from 200 to get 100.
\frac{10AD}{10A}=\frac{100}{10A}
Divide both sides by 10A.
D=\frac{100}{10A}
Dividing by 10A undoes the multiplication by 10A.
D=\frac{10}{A}
Divide 100 by 10A.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}