Solve for x
x=\sqrt{1841}+46\approx 88.906875906
x=46-\sqrt{1841}\approx 3.093124094
Graph
Share
Copied to clipboard
570+184x-2x^{2}=1120
Use the distributive property to multiply 95-x by 6+2x and combine like terms.
570+184x-2x^{2}-1120=0
Subtract 1120 from both sides.
-550+184x-2x^{2}=0
Subtract 1120 from 570 to get -550.
-2x^{2}+184x-550=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-184±\sqrt{184^{2}-4\left(-2\right)\left(-550\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 184 for b, and -550 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-184±\sqrt{33856-4\left(-2\right)\left(-550\right)}}{2\left(-2\right)}
Square 184.
x=\frac{-184±\sqrt{33856+8\left(-550\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-184±\sqrt{33856-4400}}{2\left(-2\right)}
Multiply 8 times -550.
x=\frac{-184±\sqrt{29456}}{2\left(-2\right)}
Add 33856 to -4400.
x=\frac{-184±4\sqrt{1841}}{2\left(-2\right)}
Take the square root of 29456.
x=\frac{-184±4\sqrt{1841}}{-4}
Multiply 2 times -2.
x=\frac{4\sqrt{1841}-184}{-4}
Now solve the equation x=\frac{-184±4\sqrt{1841}}{-4} when ± is plus. Add -184 to 4\sqrt{1841}.
x=46-\sqrt{1841}
Divide -184+4\sqrt{1841} by -4.
x=\frac{-4\sqrt{1841}-184}{-4}
Now solve the equation x=\frac{-184±4\sqrt{1841}}{-4} when ± is minus. Subtract 4\sqrt{1841} from -184.
x=\sqrt{1841}+46
Divide -184-4\sqrt{1841} by -4.
x=46-\sqrt{1841} x=\sqrt{1841}+46
The equation is now solved.
570+184x-2x^{2}=1120
Use the distributive property to multiply 95-x by 6+2x and combine like terms.
184x-2x^{2}=1120-570
Subtract 570 from both sides.
184x-2x^{2}=550
Subtract 570 from 1120 to get 550.
-2x^{2}+184x=550
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2x^{2}+184x}{-2}=\frac{550}{-2}
Divide both sides by -2.
x^{2}+\frac{184}{-2}x=\frac{550}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-92x=\frac{550}{-2}
Divide 184 by -2.
x^{2}-92x=-275
Divide 550 by -2.
x^{2}-92x+\left(-46\right)^{2}=-275+\left(-46\right)^{2}
Divide -92, the coefficient of the x term, by 2 to get -46. Then add the square of -46 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-92x+2116=-275+2116
Square -46.
x^{2}-92x+2116=1841
Add -275 to 2116.
\left(x-46\right)^{2}=1841
Factor x^{2}-92x+2116. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-46\right)^{2}}=\sqrt{1841}
Take the square root of both sides of the equation.
x-46=\sqrt{1841} x-46=-\sqrt{1841}
Simplify.
x=\sqrt{1841}+46 x=46-\sqrt{1841}
Add 46 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}