Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

\left(1800-600t\right)t=50
Use the distributive property to multiply 90-30t by 20.
1800t-600t^{2}=50
Use the distributive property to multiply 1800-600t by t.
1800t-600t^{2}-50=0
Subtract 50 from both sides.
-600t^{2}+1800t-50=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-1800±\sqrt{1800^{2}-4\left(-600\right)\left(-50\right)}}{2\left(-600\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -600 for a, 1800 for b, and -50 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-1800±\sqrt{3240000-4\left(-600\right)\left(-50\right)}}{2\left(-600\right)}
Square 1800.
t=\frac{-1800±\sqrt{3240000+2400\left(-50\right)}}{2\left(-600\right)}
Multiply -4 times -600.
t=\frac{-1800±\sqrt{3240000-120000}}{2\left(-600\right)}
Multiply 2400 times -50.
t=\frac{-1800±\sqrt{3120000}}{2\left(-600\right)}
Add 3240000 to -120000.
t=\frac{-1800±200\sqrt{78}}{2\left(-600\right)}
Take the square root of 3120000.
t=\frac{-1800±200\sqrt{78}}{-1200}
Multiply 2 times -600.
t=\frac{200\sqrt{78}-1800}{-1200}
Now solve the equation t=\frac{-1800±200\sqrt{78}}{-1200} when ± is plus. Add -1800 to 200\sqrt{78}.
t=-\frac{\sqrt{78}}{6}+\frac{3}{2}
Divide -1800+200\sqrt{78} by -1200.
t=\frac{-200\sqrt{78}-1800}{-1200}
Now solve the equation t=\frac{-1800±200\sqrt{78}}{-1200} when ± is minus. Subtract 200\sqrt{78} from -1800.
t=\frac{\sqrt{78}}{6}+\frac{3}{2}
Divide -1800-200\sqrt{78} by -1200.
t=-\frac{\sqrt{78}}{6}+\frac{3}{2} t=\frac{\sqrt{78}}{6}+\frac{3}{2}
The equation is now solved.
\left(1800-600t\right)t=50
Use the distributive property to multiply 90-30t by 20.
1800t-600t^{2}=50
Use the distributive property to multiply 1800-600t by t.
-600t^{2}+1800t=50
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-600t^{2}+1800t}{-600}=\frac{50}{-600}
Divide both sides by -600.
t^{2}+\frac{1800}{-600}t=\frac{50}{-600}
Dividing by -600 undoes the multiplication by -600.
t^{2}-3t=\frac{50}{-600}
Divide 1800 by -600.
t^{2}-3t=-\frac{1}{12}
Reduce the fraction \frac{50}{-600} to lowest terms by extracting and canceling out 50.
t^{2}-3t+\left(-\frac{3}{2}\right)^{2}=-\frac{1}{12}+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-3t+\frac{9}{4}=-\frac{1}{12}+\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
t^{2}-3t+\frac{9}{4}=\frac{13}{6}
Add -\frac{1}{12} to \frac{9}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t-\frac{3}{2}\right)^{2}=\frac{13}{6}
Factor t^{2}-3t+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{3}{2}\right)^{2}}=\sqrt{\frac{13}{6}}
Take the square root of both sides of the equation.
t-\frac{3}{2}=\frac{\sqrt{78}}{6} t-\frac{3}{2}=-\frac{\sqrt{78}}{6}
Simplify.
t=\frac{\sqrt{78}}{6}+\frac{3}{2} t=-\frac{\sqrt{78}}{6}+\frac{3}{2}
Add \frac{3}{2} to both sides of the equation.