Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(9x\right)^{2}-1=1
Consider \left(9x+1\right)\left(9x-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
9^{2}x^{2}-1=1
Expand \left(9x\right)^{2}.
81x^{2}-1=1
Calculate 9 to the power of 2 and get 81.
81x^{2}=1+1
Add 1 to both sides.
81x^{2}=2
Add 1 and 1 to get 2.
x^{2}=\frac{2}{81}
Divide both sides by 81.
x=\frac{\sqrt{2}}{9} x=-\frac{\sqrt{2}}{9}
Take the square root of both sides of the equation.
\left(9x\right)^{2}-1=1
Consider \left(9x+1\right)\left(9x-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
9^{2}x^{2}-1=1
Expand \left(9x\right)^{2}.
81x^{2}-1=1
Calculate 9 to the power of 2 and get 81.
81x^{2}-1-1=0
Subtract 1 from both sides.
81x^{2}-2=0
Subtract 1 from -1 to get -2.
x=\frac{0±\sqrt{0^{2}-4\times 81\left(-2\right)}}{2\times 81}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 81 for a, 0 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 81\left(-2\right)}}{2\times 81}
Square 0.
x=\frac{0±\sqrt{-324\left(-2\right)}}{2\times 81}
Multiply -4 times 81.
x=\frac{0±\sqrt{648}}{2\times 81}
Multiply -324 times -2.
x=\frac{0±18\sqrt{2}}{2\times 81}
Take the square root of 648.
x=\frac{0±18\sqrt{2}}{162}
Multiply 2 times 81.
x=\frac{\sqrt{2}}{9}
Now solve the equation x=\frac{0±18\sqrt{2}}{162} when ± is plus.
x=-\frac{\sqrt{2}}{9}
Now solve the equation x=\frac{0±18\sqrt{2}}{162} when ± is minus.
x=\frac{\sqrt{2}}{9} x=-\frac{\sqrt{2}}{9}
The equation is now solved.