Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

factor(15m+2+4m^{2})
Combine 9m and 6m to get 15m.
4m^{2}+15m+2=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
m=\frac{-15±\sqrt{15^{2}-4\times 4\times 2}}{2\times 4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
m=\frac{-15±\sqrt{225-4\times 4\times 2}}{2\times 4}
Square 15.
m=\frac{-15±\sqrt{225-16\times 2}}{2\times 4}
Multiply -4 times 4.
m=\frac{-15±\sqrt{225-32}}{2\times 4}
Multiply -16 times 2.
m=\frac{-15±\sqrt{193}}{2\times 4}
Add 225 to -32.
m=\frac{-15±\sqrt{193}}{8}
Multiply 2 times 4.
m=\frac{\sqrt{193}-15}{8}
Now solve the equation m=\frac{-15±\sqrt{193}}{8} when ± is plus. Add -15 to \sqrt{193}.
m=\frac{-\sqrt{193}-15}{8}
Now solve the equation m=\frac{-15±\sqrt{193}}{8} when ± is minus. Subtract \sqrt{193} from -15.
4m^{2}+15m+2=4\left(m-\frac{\sqrt{193}-15}{8}\right)\left(m-\frac{-\sqrt{193}-15}{8}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-15+\sqrt{193}}{8} for x_{1} and \frac{-15-\sqrt{193}}{8} for x_{2}.
15m+2+4m^{2}
Combine 9m and 6m to get 15m.