Factor
\left(2x-1\right)\left(18x+5\right)
Evaluate
\left(2x-1\right)\left(18x+5\right)
Graph
Share
Copied to clipboard
36x^{2}-8x-5
Multiply and combine like terms.
a+b=-8 ab=36\left(-5\right)=-180
Factor the expression by grouping. First, the expression needs to be rewritten as 36x^{2}+ax+bx-5. To find a and b, set up a system to be solved.
1,-180 2,-90 3,-60 4,-45 5,-36 6,-30 9,-20 10,-18 12,-15
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -180.
1-180=-179 2-90=-88 3-60=-57 4-45=-41 5-36=-31 6-30=-24 9-20=-11 10-18=-8 12-15=-3
Calculate the sum for each pair.
a=-18 b=10
The solution is the pair that gives sum -8.
\left(36x^{2}-18x\right)+\left(10x-5\right)
Rewrite 36x^{2}-8x-5 as \left(36x^{2}-18x\right)+\left(10x-5\right).
18x\left(2x-1\right)+5\left(2x-1\right)
Factor out 18x in the first and 5 in the second group.
\left(2x-1\right)\left(18x+5\right)
Factor out common term 2x-1 by using distributive property.
36x^{2}-8x-5
Multiply 9 and 4 to get 36.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}