Evaluate
-\frac{9}{4}=-2.25
Factor
-\frac{9}{4} = -2\frac{1}{4} = -2.25
Share
Copied to clipboard
\frac{9\left(1-\sqrt{2}\right)}{2}\times \frac{1+\sqrt{2}}{2}
Express 9\times \frac{1-\sqrt{2}}{2} as a single fraction.
\frac{9\left(1-\sqrt{2}\right)\left(1+\sqrt{2}\right)}{2\times 2}
Multiply \frac{9\left(1-\sqrt{2}\right)}{2} times \frac{1+\sqrt{2}}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{9\left(1-\sqrt{2}\right)\left(1+\sqrt{2}\right)}{4}
Multiply 2 and 2 to get 4.
\frac{\left(9-9\sqrt{2}\right)\left(1+\sqrt{2}\right)}{4}
Use the distributive property to multiply 9 by 1-\sqrt{2}.
\frac{9+9\sqrt{2}-9\sqrt{2}-9\left(\sqrt{2}\right)^{2}}{4}
Apply the distributive property by multiplying each term of 9-9\sqrt{2} by each term of 1+\sqrt{2}.
\frac{9-9\left(\sqrt{2}\right)^{2}}{4}
Combine 9\sqrt{2} and -9\sqrt{2} to get 0.
\frac{9-9\times 2}{4}
The square of \sqrt{2} is 2.
\frac{9-18}{4}
Multiply -9 and 2 to get -18.
\frac{-9}{4}
Subtract 18 from 9 to get -9.
-\frac{9}{4}
Fraction \frac{-9}{4} can be rewritten as -\frac{9}{4} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}