Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

64x^{2}-16x+1=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(8x-1\right)^{2}.
a+b=-16 ab=64\times 1=64
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 64x^{2}+ax+bx+1. To find a and b, set up a system to be solved.
-1,-64 -2,-32 -4,-16 -8,-8
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 64.
-1-64=-65 -2-32=-34 -4-16=-20 -8-8=-16
Calculate the sum for each pair.
a=-8 b=-8
The solution is the pair that gives sum -16.
\left(64x^{2}-8x\right)+\left(-8x+1\right)
Rewrite 64x^{2}-16x+1 as \left(64x^{2}-8x\right)+\left(-8x+1\right).
8x\left(8x-1\right)-\left(8x-1\right)
Factor out 8x in the first and -1 in the second group.
\left(8x-1\right)\left(8x-1\right)
Factor out common term 8x-1 by using distributive property.
\left(8x-1\right)^{2}
Rewrite as a binomial square.
x=\frac{1}{8}
To find equation solution, solve 8x-1=0.
64x^{2}-16x+1=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(8x-1\right)^{2}.
x=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 64}}{2\times 64}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 64 for a, -16 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-16\right)±\sqrt{256-4\times 64}}{2\times 64}
Square -16.
x=\frac{-\left(-16\right)±\sqrt{256-256}}{2\times 64}
Multiply -4 times 64.
x=\frac{-\left(-16\right)±\sqrt{0}}{2\times 64}
Add 256 to -256.
x=-\frac{-16}{2\times 64}
Take the square root of 0.
x=\frac{16}{2\times 64}
The opposite of -16 is 16.
x=\frac{16}{128}
Multiply 2 times 64.
x=\frac{1}{8}
Reduce the fraction \frac{16}{128} to lowest terms by extracting and canceling out 16.
64x^{2}-16x+1=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(8x-1\right)^{2}.
64x^{2}-16x=-1
Subtract 1 from both sides. Anything subtracted from zero gives its negation.
\frac{64x^{2}-16x}{64}=-\frac{1}{64}
Divide both sides by 64.
x^{2}+\left(-\frac{16}{64}\right)x=-\frac{1}{64}
Dividing by 64 undoes the multiplication by 64.
x^{2}-\frac{1}{4}x=-\frac{1}{64}
Reduce the fraction \frac{-16}{64} to lowest terms by extracting and canceling out 16.
x^{2}-\frac{1}{4}x+\left(-\frac{1}{8}\right)^{2}=-\frac{1}{64}+\left(-\frac{1}{8}\right)^{2}
Divide -\frac{1}{4}, the coefficient of the x term, by 2 to get -\frac{1}{8}. Then add the square of -\frac{1}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{4}x+\frac{1}{64}=\frac{-1+1}{64}
Square -\frac{1}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{4}x+\frac{1}{64}=0
Add -\frac{1}{64} to \frac{1}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{8}\right)^{2}=0
Factor x^{2}-\frac{1}{4}x+\frac{1}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{8}\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
x-\frac{1}{8}=0 x-\frac{1}{8}=0
Simplify.
x=\frac{1}{8} x=\frac{1}{8}
Add \frac{1}{8} to both sides of the equation.
x=\frac{1}{8}
The equation is now solved. Solutions are the same.