Evaluate
\frac{z}{8y^{2}}
Expand
\frac{z}{8y^{2}}
Share
Copied to clipboard
8^{-2}\left(x^{3}\right)^{-2}\left(y^{-5}\right)^{-2}\left(z^{4}\right)^{-2}\times \left(2x^{2}y^{-4}z^{3}\right)^{3}
Expand \left(8x^{3}y^{-5}z^{4}\right)^{-2}.
8^{-2}x^{-6}\left(y^{-5}\right)^{-2}\left(z^{4}\right)^{-2}\times \left(2x^{2}y^{-4}z^{3}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 3 and -2 to get -6.
8^{-2}x^{-6}y^{10}\left(z^{4}\right)^{-2}\times \left(2x^{2}y^{-4}z^{3}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply -5 and -2 to get 10.
8^{-2}x^{-6}y^{10}z^{-8}\times \left(2x^{2}y^{-4}z^{3}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 4 and -2 to get -8.
\frac{1}{64}x^{-6}y^{10}z^{-8}\times \left(2x^{2}y^{-4}z^{3}\right)^{3}
Calculate 8 to the power of -2 and get \frac{1}{64}.
\frac{1}{64}x^{-6}y^{10}z^{-8}\times 2^{3}\left(x^{2}\right)^{3}\left(y^{-4}\right)^{3}\left(z^{3}\right)^{3}
Expand \left(2x^{2}y^{-4}z^{3}\right)^{3}.
\frac{1}{64}x^{-6}y^{10}z^{-8}\times 2^{3}x^{6}\left(y^{-4}\right)^{3}\left(z^{3}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{1}{64}x^{-6}y^{10}z^{-8}\times 2^{3}x^{6}y^{-12}\left(z^{3}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply -4 and 3 to get -12.
\frac{1}{64}x^{-6}y^{10}z^{-8}\times 2^{3}x^{6}y^{-12}z^{9}
To raise a power to another power, multiply the exponents. Multiply 3 and 3 to get 9.
\frac{1}{64}x^{-6}y^{10}z^{-8}\times 8x^{6}y^{-12}z^{9}
Calculate 2 to the power of 3 and get 8.
\frac{1}{8}x^{-6}y^{10}z^{-8}x^{6}y^{-12}z^{9}
Multiply \frac{1}{64} and 8 to get \frac{1}{8}.
\frac{1}{8}y^{10}z^{-8}y^{-12}z^{9}
Multiply x^{-6} and x^{6} to get 1.
\frac{1}{8}y^{-2}z^{-8}z^{9}
To multiply powers of the same base, add their exponents. Add 10 and -12 to get -2.
\frac{1}{8}y^{-2}z^{1}
To multiply powers of the same base, add their exponents. Add -8 and 9 to get 1.
\frac{1}{8}y^{-2}z
Calculate z to the power of 1 and get z.
8^{-2}\left(x^{3}\right)^{-2}\left(y^{-5}\right)^{-2}\left(z^{4}\right)^{-2}\times \left(2x^{2}y^{-4}z^{3}\right)^{3}
Expand \left(8x^{3}y^{-5}z^{4}\right)^{-2}.
8^{-2}x^{-6}\left(y^{-5}\right)^{-2}\left(z^{4}\right)^{-2}\times \left(2x^{2}y^{-4}z^{3}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 3 and -2 to get -6.
8^{-2}x^{-6}y^{10}\left(z^{4}\right)^{-2}\times \left(2x^{2}y^{-4}z^{3}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply -5 and -2 to get 10.
8^{-2}x^{-6}y^{10}z^{-8}\times \left(2x^{2}y^{-4}z^{3}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 4 and -2 to get -8.
\frac{1}{64}x^{-6}y^{10}z^{-8}\times \left(2x^{2}y^{-4}z^{3}\right)^{3}
Calculate 8 to the power of -2 and get \frac{1}{64}.
\frac{1}{64}x^{-6}y^{10}z^{-8}\times 2^{3}\left(x^{2}\right)^{3}\left(y^{-4}\right)^{3}\left(z^{3}\right)^{3}
Expand \left(2x^{2}y^{-4}z^{3}\right)^{3}.
\frac{1}{64}x^{-6}y^{10}z^{-8}\times 2^{3}x^{6}\left(y^{-4}\right)^{3}\left(z^{3}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{1}{64}x^{-6}y^{10}z^{-8}\times 2^{3}x^{6}y^{-12}\left(z^{3}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply -4 and 3 to get -12.
\frac{1}{64}x^{-6}y^{10}z^{-8}\times 2^{3}x^{6}y^{-12}z^{9}
To raise a power to another power, multiply the exponents. Multiply 3 and 3 to get 9.
\frac{1}{64}x^{-6}y^{10}z^{-8}\times 8x^{6}y^{-12}z^{9}
Calculate 2 to the power of 3 and get 8.
\frac{1}{8}x^{-6}y^{10}z^{-8}x^{6}y^{-12}z^{9}
Multiply \frac{1}{64} and 8 to get \frac{1}{8}.
\frac{1}{8}y^{10}z^{-8}y^{-12}z^{9}
Multiply x^{-6} and x^{6} to get 1.
\frac{1}{8}y^{-2}z^{-8}z^{9}
To multiply powers of the same base, add their exponents. Add 10 and -12 to get -2.
\frac{1}{8}y^{-2}z^{1}
To multiply powers of the same base, add their exponents. Add -8 and 9 to get 1.
\frac{1}{8}y^{-2}z
Calculate z to the power of 1 and get z.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}