Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

8x^{2}-15x-2=13x
Use the distributive property to multiply 8x+1 by x-2 and combine like terms.
8x^{2}-15x-2-13x=0
Subtract 13x from both sides.
8x^{2}-28x-2=0
Combine -15x and -13x to get -28x.
x=\frac{-\left(-28\right)±\sqrt{\left(-28\right)^{2}-4\times 8\left(-2\right)}}{2\times 8}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 8 for a, -28 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-28\right)±\sqrt{784-4\times 8\left(-2\right)}}{2\times 8}
Square -28.
x=\frac{-\left(-28\right)±\sqrt{784-32\left(-2\right)}}{2\times 8}
Multiply -4 times 8.
x=\frac{-\left(-28\right)±\sqrt{784+64}}{2\times 8}
Multiply -32 times -2.
x=\frac{-\left(-28\right)±\sqrt{848}}{2\times 8}
Add 784 to 64.
x=\frac{-\left(-28\right)±4\sqrt{53}}{2\times 8}
Take the square root of 848.
x=\frac{28±4\sqrt{53}}{2\times 8}
The opposite of -28 is 28.
x=\frac{28±4\sqrt{53}}{16}
Multiply 2 times 8.
x=\frac{4\sqrt{53}+28}{16}
Now solve the equation x=\frac{28±4\sqrt{53}}{16} when ± is plus. Add 28 to 4\sqrt{53}.
x=\frac{\sqrt{53}+7}{4}
Divide 28+4\sqrt{53} by 16.
x=\frac{28-4\sqrt{53}}{16}
Now solve the equation x=\frac{28±4\sqrt{53}}{16} when ± is minus. Subtract 4\sqrt{53} from 28.
x=\frac{7-\sqrt{53}}{4}
Divide 28-4\sqrt{53} by 16.
x=\frac{\sqrt{53}+7}{4} x=\frac{7-\sqrt{53}}{4}
The equation is now solved.
8x^{2}-15x-2=13x
Use the distributive property to multiply 8x+1 by x-2 and combine like terms.
8x^{2}-15x-2-13x=0
Subtract 13x from both sides.
8x^{2}-28x-2=0
Combine -15x and -13x to get -28x.
8x^{2}-28x=2
Add 2 to both sides. Anything plus zero gives itself.
\frac{8x^{2}-28x}{8}=\frac{2}{8}
Divide both sides by 8.
x^{2}+\left(-\frac{28}{8}\right)x=\frac{2}{8}
Dividing by 8 undoes the multiplication by 8.
x^{2}-\frac{7}{2}x=\frac{2}{8}
Reduce the fraction \frac{-28}{8} to lowest terms by extracting and canceling out 4.
x^{2}-\frac{7}{2}x=\frac{1}{4}
Reduce the fraction \frac{2}{8} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{7}{2}x+\left(-\frac{7}{4}\right)^{2}=\frac{1}{4}+\left(-\frac{7}{4}\right)^{2}
Divide -\frac{7}{2}, the coefficient of the x term, by 2 to get -\frac{7}{4}. Then add the square of -\frac{7}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{7}{2}x+\frac{49}{16}=\frac{1}{4}+\frac{49}{16}
Square -\frac{7}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{7}{2}x+\frac{49}{16}=\frac{53}{16}
Add \frac{1}{4} to \frac{49}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{7}{4}\right)^{2}=\frac{53}{16}
Factor x^{2}-\frac{7}{2}x+\frac{49}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{4}\right)^{2}}=\sqrt{\frac{53}{16}}
Take the square root of both sides of the equation.
x-\frac{7}{4}=\frac{\sqrt{53}}{4} x-\frac{7}{4}=-\frac{\sqrt{53}}{4}
Simplify.
x=\frac{\sqrt{53}+7}{4} x=\frac{7-\sqrt{53}}{4}
Add \frac{7}{4} to both sides of the equation.