Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{8^{2}\left(a^{6}\right)^{2}\left(b^{3}\right)^{2}}{\left(-2a^{-2}b\right)^{3}}
Expand \left(8a^{6}b^{3}\right)^{2}.
\frac{8^{2}a^{12}\left(b^{3}\right)^{2}}{\left(-2a^{-2}b\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply 6 and 2 to get 12.
\frac{8^{2}a^{12}b^{6}}{\left(-2a^{-2}b\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
\frac{64a^{12}b^{6}}{\left(-2a^{-2}b\right)^{3}}
Calculate 8 to the power of 2 and get 64.
\frac{64a^{12}b^{6}}{\left(-2\right)^{3}\left(a^{-2}\right)^{3}b^{3}}
Expand \left(-2a^{-2}b\right)^{3}.
\frac{64a^{12}b^{6}}{\left(-2\right)^{3}a^{-6}b^{3}}
To raise a power to another power, multiply the exponents. Multiply -2 and 3 to get -6.
\frac{64a^{12}b^{6}}{-8a^{-6}b^{3}}
Calculate -2 to the power of 3 and get -8.
\frac{8b^{3}a^{12}}{-a^{-6}}
Cancel out 8b^{3} in both numerator and denominator.
\frac{8b^{3}a^{18}}{-1}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
-8b^{3}a^{18}
Anything divided by -1 gives its opposite.
\frac{8^{2}\left(a^{6}\right)^{2}\left(b^{3}\right)^{2}}{\left(-2a^{-2}b\right)^{3}}
Expand \left(8a^{6}b^{3}\right)^{2}.
\frac{8^{2}a^{12}\left(b^{3}\right)^{2}}{\left(-2a^{-2}b\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply 6 and 2 to get 12.
\frac{8^{2}a^{12}b^{6}}{\left(-2a^{-2}b\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
\frac{64a^{12}b^{6}}{\left(-2a^{-2}b\right)^{3}}
Calculate 8 to the power of 2 and get 64.
\frac{64a^{12}b^{6}}{\left(-2\right)^{3}\left(a^{-2}\right)^{3}b^{3}}
Expand \left(-2a^{-2}b\right)^{3}.
\frac{64a^{12}b^{6}}{\left(-2\right)^{3}a^{-6}b^{3}}
To raise a power to another power, multiply the exponents. Multiply -2 and 3 to get -6.
\frac{64a^{12}b^{6}}{-8a^{-6}b^{3}}
Calculate -2 to the power of 3 and get -8.
\frac{8b^{3}a^{12}}{-a^{-6}}
Cancel out 8b^{3} in both numerator and denominator.
\frac{8b^{3}a^{18}}{-1}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
-8b^{3}a^{18}
Anything divided by -1 gives its opposite.