Solve for x
x = \frac{7}{4} = 1\frac{3}{4} = 1.75
Graph
Quiz
Linear Equation
5 problems similar to:
( 8 - x ) ^ { 2 } - 5 ^ { 2 } = ( 4 - x ) ^ { 2 } + 3 ^ { 2 }
Share
Copied to clipboard
64-16x+x^{2}-5^{2}=\left(4-x\right)^{2}+3^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(8-x\right)^{2}.
64-16x+x^{2}-25=\left(4-x\right)^{2}+3^{2}
Calculate 5 to the power of 2 and get 25.
39-16x+x^{2}=\left(4-x\right)^{2}+3^{2}
Subtract 25 from 64 to get 39.
39-16x+x^{2}=16-8x+x^{2}+3^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4-x\right)^{2}.
39-16x+x^{2}=16-8x+x^{2}+9
Calculate 3 to the power of 2 and get 9.
39-16x+x^{2}=25-8x+x^{2}
Add 16 and 9 to get 25.
39-16x+x^{2}+8x=25+x^{2}
Add 8x to both sides.
39-8x+x^{2}=25+x^{2}
Combine -16x and 8x to get -8x.
39-8x+x^{2}-x^{2}=25
Subtract x^{2} from both sides.
39-8x=25
Combine x^{2} and -x^{2} to get 0.
-8x=25-39
Subtract 39 from both sides.
-8x=-14
Subtract 39 from 25 to get -14.
x=\frac{-14}{-8}
Divide both sides by -8.
x=\frac{7}{4}
Reduce the fraction \frac{-14}{-8} to lowest terms by extracting and canceling out -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}