Solve for t
t = \frac{17}{6} = 2\frac{5}{6} \approx 2.833333333
Share
Copied to clipboard
64-32t+4t^{2}+64=\left(14-2t\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(8-2t\right)^{2}.
128-32t+4t^{2}=\left(14-2t\right)^{2}
Add 64 and 64 to get 128.
128-32t+4t^{2}=196-56t+4t^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(14-2t\right)^{2}.
128-32t+4t^{2}+56t=196+4t^{2}
Add 56t to both sides.
128+24t+4t^{2}=196+4t^{2}
Combine -32t and 56t to get 24t.
128+24t+4t^{2}-4t^{2}=196
Subtract 4t^{2} from both sides.
128+24t=196
Combine 4t^{2} and -4t^{2} to get 0.
24t=196-128
Subtract 128 from both sides.
24t=68
Subtract 128 from 196 to get 68.
t=\frac{68}{24}
Divide both sides by 24.
t=\frac{17}{6}
Reduce the fraction \frac{68}{24} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}