Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

64-32t+4t^{2}+\left(6t\right)^{2}=16
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(8-2t\right)^{2}.
64-32t+4t^{2}+6^{2}t^{2}=16
Expand \left(6t\right)^{2}.
64-32t+4t^{2}+36t^{2}=16
Calculate 6 to the power of 2 and get 36.
64-32t+40t^{2}=16
Combine 4t^{2} and 36t^{2} to get 40t^{2}.
64-32t+40t^{2}-16=0
Subtract 16 from both sides.
48-32t+40t^{2}=0
Subtract 16 from 64 to get 48.
40t^{2}-32t+48=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-\left(-32\right)±\sqrt{\left(-32\right)^{2}-4\times 40\times 48}}{2\times 40}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 40 for a, -32 for b, and 48 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-32\right)±\sqrt{1024-4\times 40\times 48}}{2\times 40}
Square -32.
t=\frac{-\left(-32\right)±\sqrt{1024-160\times 48}}{2\times 40}
Multiply -4 times 40.
t=\frac{-\left(-32\right)±\sqrt{1024-7680}}{2\times 40}
Multiply -160 times 48.
t=\frac{-\left(-32\right)±\sqrt{-6656}}{2\times 40}
Add 1024 to -7680.
t=\frac{-\left(-32\right)±16\sqrt{26}i}{2\times 40}
Take the square root of -6656.
t=\frac{32±16\sqrt{26}i}{2\times 40}
The opposite of -32 is 32.
t=\frac{32±16\sqrt{26}i}{80}
Multiply 2 times 40.
t=\frac{32+16\sqrt{26}i}{80}
Now solve the equation t=\frac{32±16\sqrt{26}i}{80} when ± is plus. Add 32 to 16i\sqrt{26}.
t=\frac{2+\sqrt{26}i}{5}
Divide 32+16i\sqrt{26} by 80.
t=\frac{-16\sqrt{26}i+32}{80}
Now solve the equation t=\frac{32±16\sqrt{26}i}{80} when ± is minus. Subtract 16i\sqrt{26} from 32.
t=\frac{-\sqrt{26}i+2}{5}
Divide 32-16i\sqrt{26} by 80.
t=\frac{2+\sqrt{26}i}{5} t=\frac{-\sqrt{26}i+2}{5}
The equation is now solved.
64-32t+4t^{2}+\left(6t\right)^{2}=16
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(8-2t\right)^{2}.
64-32t+4t^{2}+6^{2}t^{2}=16
Expand \left(6t\right)^{2}.
64-32t+4t^{2}+36t^{2}=16
Calculate 6 to the power of 2 and get 36.
64-32t+40t^{2}=16
Combine 4t^{2} and 36t^{2} to get 40t^{2}.
-32t+40t^{2}=16-64
Subtract 64 from both sides.
-32t+40t^{2}=-48
Subtract 64 from 16 to get -48.
40t^{2}-32t=-48
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{40t^{2}-32t}{40}=-\frac{48}{40}
Divide both sides by 40.
t^{2}+\left(-\frac{32}{40}\right)t=-\frac{48}{40}
Dividing by 40 undoes the multiplication by 40.
t^{2}-\frac{4}{5}t=-\frac{48}{40}
Reduce the fraction \frac{-32}{40} to lowest terms by extracting and canceling out 8.
t^{2}-\frac{4}{5}t=-\frac{6}{5}
Reduce the fraction \frac{-48}{40} to lowest terms by extracting and canceling out 8.
t^{2}-\frac{4}{5}t+\left(-\frac{2}{5}\right)^{2}=-\frac{6}{5}+\left(-\frac{2}{5}\right)^{2}
Divide -\frac{4}{5}, the coefficient of the x term, by 2 to get -\frac{2}{5}. Then add the square of -\frac{2}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-\frac{4}{5}t+\frac{4}{25}=-\frac{6}{5}+\frac{4}{25}
Square -\frac{2}{5} by squaring both the numerator and the denominator of the fraction.
t^{2}-\frac{4}{5}t+\frac{4}{25}=-\frac{26}{25}
Add -\frac{6}{5} to \frac{4}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t-\frac{2}{5}\right)^{2}=-\frac{26}{25}
Factor t^{2}-\frac{4}{5}t+\frac{4}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{2}{5}\right)^{2}}=\sqrt{-\frac{26}{25}}
Take the square root of both sides of the equation.
t-\frac{2}{5}=\frac{\sqrt{26}i}{5} t-\frac{2}{5}=-\frac{\sqrt{26}i}{5}
Simplify.
t=\frac{2+\sqrt{26}i}{5} t=\frac{-\sqrt{26}i+2}{5}
Add \frac{2}{5} to both sides of the equation.