Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

8\times 3+8\times \left(2i\right)+5i\times 3+5\times 2i^{2}-\left(4+i\right)\left(4-i\right)
Multiply complex numbers 8+5i and 3+2i like you multiply binomials.
8\times 3+8\times \left(2i\right)+5i\times 3+5\times 2\left(-1\right)-\left(4+i\right)\left(4-i\right)
By definition, i^{2} is -1.
24+16i+15i-10-\left(4+i\right)\left(4-i\right)
Do the multiplications in 8\times 3+8\times \left(2i\right)+5i\times 3+5\times 2\left(-1\right).
24-10+\left(16+15\right)i-\left(4+i\right)\left(4-i\right)
Combine the real and imaginary parts in 24+16i+15i-10.
14+31i-\left(4+i\right)\left(4-i\right)
Do the additions in 24-10+\left(16+15\right)i.
14+31i-\left(4\times 4+4\left(-i\right)+4i-i^{2}\right)
Multiply complex numbers 4+i and 4-i like you multiply binomials.
14+31i-\left(4\times 4+4\left(-i\right)+4i-\left(-1\right)\right)
By definition, i^{2} is -1.
14+31i-\left(16-4i+4i+1\right)
Do the multiplications in 4\times 4+4\left(-i\right)+4i-\left(-1\right).
14+31i-\left(16+1+\left(-4+4\right)i\right)
Combine the real and imaginary parts in 16-4i+4i+1.
14+31i-17
Do the additions in 16+1+\left(-4+4\right)i.
14-17+31i
Subtract 17 from 14+31i by subtracting corresponding real and imaginary parts.
-3+31i
Subtract 17 from 14 to get -3.
Re(8\times 3+8\times \left(2i\right)+5i\times 3+5\times 2i^{2}-\left(4+i\right)\left(4-i\right))
Multiply complex numbers 8+5i and 3+2i like you multiply binomials.
Re(8\times 3+8\times \left(2i\right)+5i\times 3+5\times 2\left(-1\right)-\left(4+i\right)\left(4-i\right))
By definition, i^{2} is -1.
Re(24+16i+15i-10-\left(4+i\right)\left(4-i\right))
Do the multiplications in 8\times 3+8\times \left(2i\right)+5i\times 3+5\times 2\left(-1\right).
Re(24-10+\left(16+15\right)i-\left(4+i\right)\left(4-i\right))
Combine the real and imaginary parts in 24+16i+15i-10.
Re(14+31i-\left(4+i\right)\left(4-i\right))
Do the additions in 24-10+\left(16+15\right)i.
Re(14+31i-\left(4\times 4+4\left(-i\right)+4i-i^{2}\right))
Multiply complex numbers 4+i and 4-i like you multiply binomials.
Re(14+31i-\left(4\times 4+4\left(-i\right)+4i-\left(-1\right)\right))
By definition, i^{2} is -1.
Re(14+31i-\left(16-4i+4i+1\right))
Do the multiplications in 4\times 4+4\left(-i\right)+4i-\left(-1\right).
Re(14+31i-\left(16+1+\left(-4+4\right)i\right))
Combine the real and imaginary parts in 16-4i+4i+1.
Re(14+31i-17)
Do the additions in 16+1+\left(-4+4\right)i.
Re(14-17+31i)
Subtract 17 from 14+31i by subtracting corresponding real and imaginary parts.
Re(-3+31i)
Subtract 17 from 14 to get -3.
-3
The real part of -3+31i is -3.