Evaluate
-3+31i
Real Part
-3
Share
Copied to clipboard
8\times 3+8\times \left(2i\right)+5i\times 3+5\times 2i^{2}-\left(4+i\right)\left(4-i\right)
Multiply complex numbers 8+5i and 3+2i like you multiply binomials.
8\times 3+8\times \left(2i\right)+5i\times 3+5\times 2\left(-1\right)-\left(4+i\right)\left(4-i\right)
By definition, i^{2} is -1.
24+16i+15i-10-\left(4+i\right)\left(4-i\right)
Do the multiplications in 8\times 3+8\times \left(2i\right)+5i\times 3+5\times 2\left(-1\right).
24-10+\left(16+15\right)i-\left(4+i\right)\left(4-i\right)
Combine the real and imaginary parts in 24+16i+15i-10.
14+31i-\left(4+i\right)\left(4-i\right)
Do the additions in 24-10+\left(16+15\right)i.
14+31i-\left(4\times 4+4\left(-i\right)+4i-i^{2}\right)
Multiply complex numbers 4+i and 4-i like you multiply binomials.
14+31i-\left(4\times 4+4\left(-i\right)+4i-\left(-1\right)\right)
By definition, i^{2} is -1.
14+31i-\left(16-4i+4i+1\right)
Do the multiplications in 4\times 4+4\left(-i\right)+4i-\left(-1\right).
14+31i-\left(16+1+\left(-4+4\right)i\right)
Combine the real and imaginary parts in 16-4i+4i+1.
14+31i-17
Do the additions in 16+1+\left(-4+4\right)i.
14-17+31i
Subtract 17 from 14+31i by subtracting corresponding real and imaginary parts.
-3+31i
Subtract 17 from 14 to get -3.
Re(8\times 3+8\times \left(2i\right)+5i\times 3+5\times 2i^{2}-\left(4+i\right)\left(4-i\right))
Multiply complex numbers 8+5i and 3+2i like you multiply binomials.
Re(8\times 3+8\times \left(2i\right)+5i\times 3+5\times 2\left(-1\right)-\left(4+i\right)\left(4-i\right))
By definition, i^{2} is -1.
Re(24+16i+15i-10-\left(4+i\right)\left(4-i\right))
Do the multiplications in 8\times 3+8\times \left(2i\right)+5i\times 3+5\times 2\left(-1\right).
Re(24-10+\left(16+15\right)i-\left(4+i\right)\left(4-i\right))
Combine the real and imaginary parts in 24+16i+15i-10.
Re(14+31i-\left(4+i\right)\left(4-i\right))
Do the additions in 24-10+\left(16+15\right)i.
Re(14+31i-\left(4\times 4+4\left(-i\right)+4i-i^{2}\right))
Multiply complex numbers 4+i and 4-i like you multiply binomials.
Re(14+31i-\left(4\times 4+4\left(-i\right)+4i-\left(-1\right)\right))
By definition, i^{2} is -1.
Re(14+31i-\left(16-4i+4i+1\right))
Do the multiplications in 4\times 4+4\left(-i\right)+4i-\left(-1\right).
Re(14+31i-\left(16+1+\left(-4+4\right)i\right))
Combine the real and imaginary parts in 16-4i+4i+1.
Re(14+31i-17)
Do the additions in 16+1+\left(-4+4\right)i.
Re(14-17+31i)
Subtract 17 from 14+31i by subtracting corresponding real and imaginary parts.
Re(-3+31i)
Subtract 17 from 14 to get -3.
-3
The real part of -3+31i is -3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}