Solve for x
x = \frac{11}{7} = 1\frac{4}{7} \approx 1.571428571
x=-1
Graph
Share
Copied to clipboard
49x^{2}-28x+4-1=80
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(7x-2\right)^{2}.
49x^{2}-28x+3=80
Subtract 1 from 4 to get 3.
49x^{2}-28x+3-80=0
Subtract 80 from both sides.
49x^{2}-28x-77=0
Subtract 80 from 3 to get -77.
7x^{2}-4x-11=0
Divide both sides by 7.
a+b=-4 ab=7\left(-11\right)=-77
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 7x^{2}+ax+bx-11. To find a and b, set up a system to be solved.
1,-77 7,-11
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -77.
1-77=-76 7-11=-4
Calculate the sum for each pair.
a=-11 b=7
The solution is the pair that gives sum -4.
\left(7x^{2}-11x\right)+\left(7x-11\right)
Rewrite 7x^{2}-4x-11 as \left(7x^{2}-11x\right)+\left(7x-11\right).
x\left(7x-11\right)+7x-11
Factor out x in 7x^{2}-11x.
\left(7x-11\right)\left(x+1\right)
Factor out common term 7x-11 by using distributive property.
x=\frac{11}{7} x=-1
To find equation solutions, solve 7x-11=0 and x+1=0.
49x^{2}-28x+4-1=80
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(7x-2\right)^{2}.
49x^{2}-28x+3=80
Subtract 1 from 4 to get 3.
49x^{2}-28x+3-80=0
Subtract 80 from both sides.
49x^{2}-28x-77=0
Subtract 80 from 3 to get -77.
x=\frac{-\left(-28\right)±\sqrt{\left(-28\right)^{2}-4\times 49\left(-77\right)}}{2\times 49}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 49 for a, -28 for b, and -77 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-28\right)±\sqrt{784-4\times 49\left(-77\right)}}{2\times 49}
Square -28.
x=\frac{-\left(-28\right)±\sqrt{784-196\left(-77\right)}}{2\times 49}
Multiply -4 times 49.
x=\frac{-\left(-28\right)±\sqrt{784+15092}}{2\times 49}
Multiply -196 times -77.
x=\frac{-\left(-28\right)±\sqrt{15876}}{2\times 49}
Add 784 to 15092.
x=\frac{-\left(-28\right)±126}{2\times 49}
Take the square root of 15876.
x=\frac{28±126}{2\times 49}
The opposite of -28 is 28.
x=\frac{28±126}{98}
Multiply 2 times 49.
x=\frac{154}{98}
Now solve the equation x=\frac{28±126}{98} when ± is plus. Add 28 to 126.
x=\frac{11}{7}
Reduce the fraction \frac{154}{98} to lowest terms by extracting and canceling out 14.
x=-\frac{98}{98}
Now solve the equation x=\frac{28±126}{98} when ± is minus. Subtract 126 from 28.
x=-1
Divide -98 by 98.
x=\frac{11}{7} x=-1
The equation is now solved.
49x^{2}-28x+4-1=80
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(7x-2\right)^{2}.
49x^{2}-28x+3=80
Subtract 1 from 4 to get 3.
49x^{2}-28x=80-3
Subtract 3 from both sides.
49x^{2}-28x=77
Subtract 3 from 80 to get 77.
\frac{49x^{2}-28x}{49}=\frac{77}{49}
Divide both sides by 49.
x^{2}+\left(-\frac{28}{49}\right)x=\frac{77}{49}
Dividing by 49 undoes the multiplication by 49.
x^{2}-\frac{4}{7}x=\frac{77}{49}
Reduce the fraction \frac{-28}{49} to lowest terms by extracting and canceling out 7.
x^{2}-\frac{4}{7}x=\frac{11}{7}
Reduce the fraction \frac{77}{49} to lowest terms by extracting and canceling out 7.
x^{2}-\frac{4}{7}x+\left(-\frac{2}{7}\right)^{2}=\frac{11}{7}+\left(-\frac{2}{7}\right)^{2}
Divide -\frac{4}{7}, the coefficient of the x term, by 2 to get -\frac{2}{7}. Then add the square of -\frac{2}{7} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{4}{7}x+\frac{4}{49}=\frac{11}{7}+\frac{4}{49}
Square -\frac{2}{7} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{4}{7}x+\frac{4}{49}=\frac{81}{49}
Add \frac{11}{7} to \frac{4}{49} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{2}{7}\right)^{2}=\frac{81}{49}
Factor x^{2}-\frac{4}{7}x+\frac{4}{49}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{2}{7}\right)^{2}}=\sqrt{\frac{81}{49}}
Take the square root of both sides of the equation.
x-\frac{2}{7}=\frac{9}{7} x-\frac{2}{7}=-\frac{9}{7}
Simplify.
x=\frac{11}{7} x=-1
Add \frac{2}{7} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}