Evaluate
\frac{1}{512u^{\frac{3}{2}}}
Differentiate w.r.t. u
-\frac{3}{1024u^{\frac{5}{2}}}
Share
Copied to clipboard
64^{-\frac{3}{2}}u^{-\frac{3}{2}}
Expand \left(64u\right)^{-\frac{3}{2}}.
\frac{1}{512}u^{-\frac{3}{2}}
Calculate 64 to the power of -\frac{3}{2} and get \frac{1}{512}.
\frac{\mathrm{d}}{\mathrm{d}u}(64^{-\frac{3}{2}}u^{-\frac{3}{2}})
Expand \left(64u\right)^{-\frac{3}{2}}.
\frac{\mathrm{d}}{\mathrm{d}u}(\frac{1}{512}u^{-\frac{3}{2}})
Calculate 64 to the power of -\frac{3}{2} and get \frac{1}{512}.
-\frac{3}{2}\times \frac{1}{512}u^{-\frac{3}{2}-1}
The derivative of ax^{n} is nax^{n-1}.
-\frac{3}{1024}u^{-\frac{3}{2}-1}
Multiply -\frac{3}{2} times \frac{1}{512} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
-\frac{3}{1024}u^{-\frac{5}{2}}
Subtract 1 from -\frac{3}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}