Solve for x
x=-\frac{2}{7}\approx -0.285714286
x=-7
Graph
Share
Copied to clipboard
36x^{2}-60x+25-\left(8x+9\right)^{2}=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(6x-5\right)^{2}.
36x^{2}-60x+25-\left(64x^{2}+144x+81\right)=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(8x+9\right)^{2}.
36x^{2}-60x+25-64x^{2}-144x-81=0
To find the opposite of 64x^{2}+144x+81, find the opposite of each term.
-28x^{2}-60x+25-144x-81=0
Combine 36x^{2} and -64x^{2} to get -28x^{2}.
-28x^{2}-204x+25-81=0
Combine -60x and -144x to get -204x.
-28x^{2}-204x-56=0
Subtract 81 from 25 to get -56.
x=\frac{-\left(-204\right)±\sqrt{\left(-204\right)^{2}-4\left(-28\right)\left(-56\right)}}{2\left(-28\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -28 for a, -204 for b, and -56 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-204\right)±\sqrt{41616-4\left(-28\right)\left(-56\right)}}{2\left(-28\right)}
Square -204.
x=\frac{-\left(-204\right)±\sqrt{41616+112\left(-56\right)}}{2\left(-28\right)}
Multiply -4 times -28.
x=\frac{-\left(-204\right)±\sqrt{41616-6272}}{2\left(-28\right)}
Multiply 112 times -56.
x=\frac{-\left(-204\right)±\sqrt{35344}}{2\left(-28\right)}
Add 41616 to -6272.
x=\frac{-\left(-204\right)±188}{2\left(-28\right)}
Take the square root of 35344.
x=\frac{204±188}{2\left(-28\right)}
The opposite of -204 is 204.
x=\frac{204±188}{-56}
Multiply 2 times -28.
x=\frac{392}{-56}
Now solve the equation x=\frac{204±188}{-56} when ± is plus. Add 204 to 188.
x=-7
Divide 392 by -56.
x=\frac{16}{-56}
Now solve the equation x=\frac{204±188}{-56} when ± is minus. Subtract 188 from 204.
x=-\frac{2}{7}
Reduce the fraction \frac{16}{-56} to lowest terms by extracting and canceling out 8.
x=-7 x=-\frac{2}{7}
The equation is now solved.
36x^{2}-60x+25-\left(8x+9\right)^{2}=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(6x-5\right)^{2}.
36x^{2}-60x+25-\left(64x^{2}+144x+81\right)=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(8x+9\right)^{2}.
36x^{2}-60x+25-64x^{2}-144x-81=0
To find the opposite of 64x^{2}+144x+81, find the opposite of each term.
-28x^{2}-60x+25-144x-81=0
Combine 36x^{2} and -64x^{2} to get -28x^{2}.
-28x^{2}-204x+25-81=0
Combine -60x and -144x to get -204x.
-28x^{2}-204x-56=0
Subtract 81 from 25 to get -56.
-28x^{2}-204x=56
Add 56 to both sides. Anything plus zero gives itself.
\frac{-28x^{2}-204x}{-28}=\frac{56}{-28}
Divide both sides by -28.
x^{2}+\left(-\frac{204}{-28}\right)x=\frac{56}{-28}
Dividing by -28 undoes the multiplication by -28.
x^{2}+\frac{51}{7}x=\frac{56}{-28}
Reduce the fraction \frac{-204}{-28} to lowest terms by extracting and canceling out 4.
x^{2}+\frac{51}{7}x=-2
Divide 56 by -28.
x^{2}+\frac{51}{7}x+\left(\frac{51}{14}\right)^{2}=-2+\left(\frac{51}{14}\right)^{2}
Divide \frac{51}{7}, the coefficient of the x term, by 2 to get \frac{51}{14}. Then add the square of \frac{51}{14} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{51}{7}x+\frac{2601}{196}=-2+\frac{2601}{196}
Square \frac{51}{14} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{51}{7}x+\frac{2601}{196}=\frac{2209}{196}
Add -2 to \frac{2601}{196}.
\left(x+\frac{51}{14}\right)^{2}=\frac{2209}{196}
Factor x^{2}+\frac{51}{7}x+\frac{2601}{196}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{51}{14}\right)^{2}}=\sqrt{\frac{2209}{196}}
Take the square root of both sides of the equation.
x+\frac{51}{14}=\frac{47}{14} x+\frac{51}{14}=-\frac{47}{14}
Simplify.
x=-\frac{2}{7} x=-7
Subtract \frac{51}{14} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}