Solve for x
x=\frac{1}{6}\approx 0.166666667
Graph
Share
Copied to clipboard
36x^{2}-60x+25=9\left(2x+1\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(6x-5\right)^{2}.
36x^{2}-60x+25=9\left(4x^{2}+4x+1\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
36x^{2}-60x+25=36x^{2}+36x+9
Use the distributive property to multiply 9 by 4x^{2}+4x+1.
36x^{2}-60x+25-36x^{2}=36x+9
Subtract 36x^{2} from both sides.
-60x+25=36x+9
Combine 36x^{2} and -36x^{2} to get 0.
-60x+25-36x=9
Subtract 36x from both sides.
-96x+25=9
Combine -60x and -36x to get -96x.
-96x=9-25
Subtract 25 from both sides.
-96x=-16
Subtract 25 from 9 to get -16.
x=\frac{-16}{-96}
Divide both sides by -96.
x=\frac{1}{6}
Reduce the fraction \frac{-16}{-96} to lowest terms by extracting and canceling out -16.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}