Solve for x
x = \frac{\sqrt{201} + 11}{20} \approx 1.258872344
x=\frac{11-\sqrt{201}}{20}\approx -0.158872344
Graph
Share
Copied to clipboard
30x^{2}-3x-6=30x
Use the distributive property to multiply 6x-3 by 5x+2 and combine like terms.
30x^{2}-3x-6-30x=0
Subtract 30x from both sides.
30x^{2}-33x-6=0
Combine -3x and -30x to get -33x.
x=\frac{-\left(-33\right)±\sqrt{\left(-33\right)^{2}-4\times 30\left(-6\right)}}{2\times 30}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 30 for a, -33 for b, and -6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-33\right)±\sqrt{1089-4\times 30\left(-6\right)}}{2\times 30}
Square -33.
x=\frac{-\left(-33\right)±\sqrt{1089-120\left(-6\right)}}{2\times 30}
Multiply -4 times 30.
x=\frac{-\left(-33\right)±\sqrt{1089+720}}{2\times 30}
Multiply -120 times -6.
x=\frac{-\left(-33\right)±\sqrt{1809}}{2\times 30}
Add 1089 to 720.
x=\frac{-\left(-33\right)±3\sqrt{201}}{2\times 30}
Take the square root of 1809.
x=\frac{33±3\sqrt{201}}{2\times 30}
The opposite of -33 is 33.
x=\frac{33±3\sqrt{201}}{60}
Multiply 2 times 30.
x=\frac{3\sqrt{201}+33}{60}
Now solve the equation x=\frac{33±3\sqrt{201}}{60} when ± is plus. Add 33 to 3\sqrt{201}.
x=\frac{\sqrt{201}+11}{20}
Divide 33+3\sqrt{201} by 60.
x=\frac{33-3\sqrt{201}}{60}
Now solve the equation x=\frac{33±3\sqrt{201}}{60} when ± is minus. Subtract 3\sqrt{201} from 33.
x=\frac{11-\sqrt{201}}{20}
Divide 33-3\sqrt{201} by 60.
x=\frac{\sqrt{201}+11}{20} x=\frac{11-\sqrt{201}}{20}
The equation is now solved.
30x^{2}-3x-6=30x
Use the distributive property to multiply 6x-3 by 5x+2 and combine like terms.
30x^{2}-3x-6-30x=0
Subtract 30x from both sides.
30x^{2}-33x-6=0
Combine -3x and -30x to get -33x.
30x^{2}-33x=6
Add 6 to both sides. Anything plus zero gives itself.
\frac{30x^{2}-33x}{30}=\frac{6}{30}
Divide both sides by 30.
x^{2}+\left(-\frac{33}{30}\right)x=\frac{6}{30}
Dividing by 30 undoes the multiplication by 30.
x^{2}-\frac{11}{10}x=\frac{6}{30}
Reduce the fraction \frac{-33}{30} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{11}{10}x=\frac{1}{5}
Reduce the fraction \frac{6}{30} to lowest terms by extracting and canceling out 6.
x^{2}-\frac{11}{10}x+\left(-\frac{11}{20}\right)^{2}=\frac{1}{5}+\left(-\frac{11}{20}\right)^{2}
Divide -\frac{11}{10}, the coefficient of the x term, by 2 to get -\frac{11}{20}. Then add the square of -\frac{11}{20} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{11}{10}x+\frac{121}{400}=\frac{1}{5}+\frac{121}{400}
Square -\frac{11}{20} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{11}{10}x+\frac{121}{400}=\frac{201}{400}
Add \frac{1}{5} to \frac{121}{400} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{11}{20}\right)^{2}=\frac{201}{400}
Factor x^{2}-\frac{11}{10}x+\frac{121}{400}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{11}{20}\right)^{2}}=\sqrt{\frac{201}{400}}
Take the square root of both sides of the equation.
x-\frac{11}{20}=\frac{\sqrt{201}}{20} x-\frac{11}{20}=-\frac{\sqrt{201}}{20}
Simplify.
x=\frac{\sqrt{201}+11}{20} x=\frac{11-\sqrt{201}}{20}
Add \frac{11}{20} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}