Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

factor(6u+7+u^{2})
Add 6 and 1 to get 7.
u^{2}+6u+7=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
u=\frac{-6±\sqrt{6^{2}-4\times 7}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
u=\frac{-6±\sqrt{36-4\times 7}}{2}
Square 6.
u=\frac{-6±\sqrt{36-28}}{2}
Multiply -4 times 7.
u=\frac{-6±\sqrt{8}}{2}
Add 36 to -28.
u=\frac{-6±2\sqrt{2}}{2}
Take the square root of 8.
u=\frac{2\sqrt{2}-6}{2}
Now solve the equation u=\frac{-6±2\sqrt{2}}{2} when ± is plus. Add -6 to 2\sqrt{2}.
u=\sqrt{2}-3
Divide -6+2\sqrt{2} by 2.
u=\frac{-2\sqrt{2}-6}{2}
Now solve the equation u=\frac{-6±2\sqrt{2}}{2} when ± is minus. Subtract 2\sqrt{2} from -6.
u=-\sqrt{2}-3
Divide -6-2\sqrt{2} by 2.
u^{2}+6u+7=\left(u-\left(\sqrt{2}-3\right)\right)\left(u-\left(-\sqrt{2}-3\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -3+\sqrt{2} for x_{1} and -3-\sqrt{2} for x_{2}.
6u+7+u^{2}
Add 6 and 1 to get 7.