Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

13x-6-2x^{2}=13
Use the distributive property to multiply 6-x by 2x-1 and combine like terms.
13x-6-2x^{2}-13=0
Subtract 13 from both sides.
13x-19-2x^{2}=0
Subtract 13 from -6 to get -19.
-2x^{2}+13x-19=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-13±\sqrt{13^{2}-4\left(-2\right)\left(-19\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 13 for b, and -19 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-13±\sqrt{169-4\left(-2\right)\left(-19\right)}}{2\left(-2\right)}
Square 13.
x=\frac{-13±\sqrt{169+8\left(-19\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-13±\sqrt{169-152}}{2\left(-2\right)}
Multiply 8 times -19.
x=\frac{-13±\sqrt{17}}{2\left(-2\right)}
Add 169 to -152.
x=\frac{-13±\sqrt{17}}{-4}
Multiply 2 times -2.
x=\frac{\sqrt{17}-13}{-4}
Now solve the equation x=\frac{-13±\sqrt{17}}{-4} when ± is plus. Add -13 to \sqrt{17}.
x=\frac{13-\sqrt{17}}{4}
Divide -13+\sqrt{17} by -4.
x=\frac{-\sqrt{17}-13}{-4}
Now solve the equation x=\frac{-13±\sqrt{17}}{-4} when ± is minus. Subtract \sqrt{17} from -13.
x=\frac{\sqrt{17}+13}{4}
Divide -13-\sqrt{17} by -4.
x=\frac{13-\sqrt{17}}{4} x=\frac{\sqrt{17}+13}{4}
The equation is now solved.
13x-6-2x^{2}=13
Use the distributive property to multiply 6-x by 2x-1 and combine like terms.
13x-2x^{2}=13+6
Add 6 to both sides.
13x-2x^{2}=19
Add 13 and 6 to get 19.
-2x^{2}+13x=19
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2x^{2}+13x}{-2}=\frac{19}{-2}
Divide both sides by -2.
x^{2}+\frac{13}{-2}x=\frac{19}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-\frac{13}{2}x=\frac{19}{-2}
Divide 13 by -2.
x^{2}-\frac{13}{2}x=-\frac{19}{2}
Divide 19 by -2.
x^{2}-\frac{13}{2}x+\left(-\frac{13}{4}\right)^{2}=-\frac{19}{2}+\left(-\frac{13}{4}\right)^{2}
Divide -\frac{13}{2}, the coefficient of the x term, by 2 to get -\frac{13}{4}. Then add the square of -\frac{13}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{13}{2}x+\frac{169}{16}=-\frac{19}{2}+\frac{169}{16}
Square -\frac{13}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{13}{2}x+\frac{169}{16}=\frac{17}{16}
Add -\frac{19}{2} to \frac{169}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{13}{4}\right)^{2}=\frac{17}{16}
Factor x^{2}-\frac{13}{2}x+\frac{169}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{13}{4}\right)^{2}}=\sqrt{\frac{17}{16}}
Take the square root of both sides of the equation.
x-\frac{13}{4}=\frac{\sqrt{17}}{4} x-\frac{13}{4}=-\frac{\sqrt{17}}{4}
Simplify.
x=\frac{\sqrt{17}+13}{4} x=\frac{13-\sqrt{17}}{4}
Add \frac{13}{4} to both sides of the equation.