Solve for x
x=0
x=4
Graph
Share
Copied to clipboard
\left(6-2\sqrt{x}\right)^{2}+8x=36
Calculate 6 to the power of 2 and get 36.
36-24\sqrt{x}+4\left(\sqrt{x}\right)^{2}+8x=36
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(6-2\sqrt{x}\right)^{2}.
36-24\sqrt{x}+4x+8x=36
Calculate \sqrt{x} to the power of 2 and get x.
36-24\sqrt{x}+12x=36
Combine 4x and 8x to get 12x.
-24\sqrt{x}+12x=36-36
Subtract 36 from both sides.
-24\sqrt{x}+12x=0
Subtract 36 from 36 to get 0.
-24\sqrt{x}=-12x
Subtract 12x from both sides of the equation.
\left(-24\sqrt{x}\right)^{2}=\left(-12x\right)^{2}
Square both sides of the equation.
\left(-24\right)^{2}\left(\sqrt{x}\right)^{2}=\left(-12x\right)^{2}
Expand \left(-24\sqrt{x}\right)^{2}.
576\left(\sqrt{x}\right)^{2}=\left(-12x\right)^{2}
Calculate -24 to the power of 2 and get 576.
576x=\left(-12x\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
576x=\left(-12\right)^{2}x^{2}
Expand \left(-12x\right)^{2}.
576x=144x^{2}
Calculate -12 to the power of 2 and get 144.
576x-144x^{2}=0
Subtract 144x^{2} from both sides.
x\left(576-144x\right)=0
Factor out x.
x=0 x=4
To find equation solutions, solve x=0 and 576-144x=0.
\left(6-2\sqrt{0}\right)^{2}+8\times 0=6^{2}
Substitute 0 for x in the equation \left(6-2\sqrt{x}\right)^{2}+8x=6^{2}.
36=36
Simplify. The value x=0 satisfies the equation.
\left(6-2\sqrt{4}\right)^{2}+8\times 4=6^{2}
Substitute 4 for x in the equation \left(6-2\sqrt{x}\right)^{2}+8x=6^{2}.
36=36
Simplify. The value x=4 satisfies the equation.
x=0 x=4
List all solutions of -24\sqrt{x}=-12x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}