Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

6\left(-\sqrt{3}\right)^{0}+9+\sqrt{27}-\frac{2+\sqrt{3}}{2-\sqrt{3}}
Calculate \frac{1}{3} to the power of -2 and get 9.
6\left(-\sqrt{3}\right)^{0}+9+3\sqrt{3}-\frac{2+\sqrt{3}}{2-\sqrt{3}}
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
6\left(-\sqrt{3}\right)^{0}+9+3\sqrt{3}-\frac{\left(2+\sqrt{3}\right)\left(2+\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}
Rationalize the denominator of \frac{2+\sqrt{3}}{2-\sqrt{3}} by multiplying numerator and denominator by 2+\sqrt{3}.
6\left(-\sqrt{3}\right)^{0}+9+3\sqrt{3}-\frac{\left(2+\sqrt{3}\right)\left(2+\sqrt{3}\right)}{2^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
6\left(-\sqrt{3}\right)^{0}+9+3\sqrt{3}-\frac{\left(2+\sqrt{3}\right)\left(2+\sqrt{3}\right)}{4-3}
Square 2. Square \sqrt{3}.
6\left(-\sqrt{3}\right)^{0}+9+3\sqrt{3}-\frac{\left(2+\sqrt{3}\right)\left(2+\sqrt{3}\right)}{1}
Subtract 3 from 4 to get 1.
6\left(-\sqrt{3}\right)^{0}+9+3\sqrt{3}-\left(2+\sqrt{3}\right)\left(2+\sqrt{3}\right)
Anything divided by one gives itself.
6\left(-\sqrt{3}\right)^{0}+9+3\sqrt{3}-\left(2+\sqrt{3}\right)^{2}
Multiply 2+\sqrt{3} and 2+\sqrt{3} to get \left(2+\sqrt{3}\right)^{2}.
6\left(-\sqrt{3}\right)^{0}+9+3\sqrt{3}-\left(4+4\sqrt{3}+\left(\sqrt{3}\right)^{2}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2+\sqrt{3}\right)^{2}.
6\left(-\sqrt{3}\right)^{0}+9+3\sqrt{3}-\left(4+4\sqrt{3}+3\right)
The square of \sqrt{3} is 3.
6\left(-\sqrt{3}\right)^{0}+9+3\sqrt{3}-\left(7+4\sqrt{3}\right)
Add 4 and 3 to get 7.
6\left(-\sqrt{3}\right)^{0}+9+3\sqrt{3}-7-4\sqrt{3}
To find the opposite of 7+4\sqrt{3}, find the opposite of each term.
6\left(-\sqrt{3}\right)^{0}+2+3\sqrt{3}-4\sqrt{3}
Subtract 7 from 9 to get 2.
6\left(-\sqrt{3}\right)^{0}+2-\sqrt{3}
Combine 3\sqrt{3} and -4\sqrt{3} to get -\sqrt{3}.
6\times 1+2-\sqrt{3}
Calculate -\sqrt{3} to the power of 0 and get 1.
6+2-\sqrt{3}
Multiply 6 and 1 to get 6.
8-\sqrt{3}
Add 6 and 2 to get 8.