Evaluate
8-\sqrt{3}\approx 6.267949192
Share
Copied to clipboard
6\left(-\sqrt{3}\right)^{0}+9+\sqrt{27}-\frac{2+\sqrt{3}}{2-\sqrt{3}}
Calculate \frac{1}{3} to the power of -2 and get 9.
6\left(-\sqrt{3}\right)^{0}+9+3\sqrt{3}-\frac{2+\sqrt{3}}{2-\sqrt{3}}
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
6\left(-\sqrt{3}\right)^{0}+9+3\sqrt{3}-\frac{\left(2+\sqrt{3}\right)\left(2+\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}
Rationalize the denominator of \frac{2+\sqrt{3}}{2-\sqrt{3}} by multiplying numerator and denominator by 2+\sqrt{3}.
6\left(-\sqrt{3}\right)^{0}+9+3\sqrt{3}-\frac{\left(2+\sqrt{3}\right)\left(2+\sqrt{3}\right)}{2^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
6\left(-\sqrt{3}\right)^{0}+9+3\sqrt{3}-\frac{\left(2+\sqrt{3}\right)\left(2+\sqrt{3}\right)}{4-3}
Square 2. Square \sqrt{3}.
6\left(-\sqrt{3}\right)^{0}+9+3\sqrt{3}-\frac{\left(2+\sqrt{3}\right)\left(2+\sqrt{3}\right)}{1}
Subtract 3 from 4 to get 1.
6\left(-\sqrt{3}\right)^{0}+9+3\sqrt{3}-\left(2+\sqrt{3}\right)\left(2+\sqrt{3}\right)
Anything divided by one gives itself.
6\left(-\sqrt{3}\right)^{0}+9+3\sqrt{3}-\left(2+\sqrt{3}\right)^{2}
Multiply 2+\sqrt{3} and 2+\sqrt{3} to get \left(2+\sqrt{3}\right)^{2}.
6\left(-\sqrt{3}\right)^{0}+9+3\sqrt{3}-\left(4+4\sqrt{3}+\left(\sqrt{3}\right)^{2}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2+\sqrt{3}\right)^{2}.
6\left(-\sqrt{3}\right)^{0}+9+3\sqrt{3}-\left(4+4\sqrt{3}+3\right)
The square of \sqrt{3} is 3.
6\left(-\sqrt{3}\right)^{0}+9+3\sqrt{3}-\left(7+4\sqrt{3}\right)
Add 4 and 3 to get 7.
6\left(-\sqrt{3}\right)^{0}+9+3\sqrt{3}-7-4\sqrt{3}
To find the opposite of 7+4\sqrt{3}, find the opposite of each term.
6\left(-\sqrt{3}\right)^{0}+2+3\sqrt{3}-4\sqrt{3}
Subtract 7 from 9 to get 2.
6\left(-\sqrt{3}\right)^{0}+2-\sqrt{3}
Combine 3\sqrt{3} and -4\sqrt{3} to get -\sqrt{3}.
6\times 1+2-\sqrt{3}
Calculate -\sqrt{3} to the power of 0 and get 1.
6+2-\sqrt{3}
Multiply 6 and 1 to get 6.
8-\sqrt{3}
Add 6 and 2 to get 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}