Evaluate
16
Factor
2^{4}
Share
Copied to clipboard
\frac{6\times 2\sqrt{2}+8\sqrt{18}-4\sqrt{50}}{2}\sqrt{2}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{12\sqrt{2}+8\sqrt{18}-4\sqrt{50}}{2}\sqrt{2}
Multiply 6 and 2 to get 12.
\frac{12\sqrt{2}+8\times 3\sqrt{2}-4\sqrt{50}}{2}\sqrt{2}
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
\frac{12\sqrt{2}+24\sqrt{2}-4\sqrt{50}}{2}\sqrt{2}
Multiply 8 and 3 to get 24.
\frac{36\sqrt{2}-4\sqrt{50}}{2}\sqrt{2}
Combine 12\sqrt{2} and 24\sqrt{2} to get 36\sqrt{2}.
\frac{36\sqrt{2}-4\times 5\sqrt{2}}{2}\sqrt{2}
Factor 50=5^{2}\times 2. Rewrite the square root of the product \sqrt{5^{2}\times 2} as the product of square roots \sqrt{5^{2}}\sqrt{2}. Take the square root of 5^{2}.
\frac{36\sqrt{2}-20\sqrt{2}}{2}\sqrt{2}
Multiply -4 and 5 to get -20.
\frac{16\sqrt{2}}{2}\sqrt{2}
Combine 36\sqrt{2} and -20\sqrt{2} to get 16\sqrt{2}.
8\sqrt{2}\sqrt{2}
Divide 16\sqrt{2} by 2 to get 8\sqrt{2}.
8\times 2
Multiply \sqrt{2} and \sqrt{2} to get 2.
16
Multiply 8 and 2 to get 16.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}