Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\frac{6\sqrt{2}x}{x}-\frac{4\sqrt{2}}{x}\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 6\sqrt{2} times \frac{x}{x}.
\left(\frac{6\sqrt{2}x-4\sqrt{2}}{x}\right)^{2}
Since \frac{6\sqrt{2}x}{x} and \frac{4\sqrt{2}}{x} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(6\sqrt{2}x-4\sqrt{2}\right)^{2}}{x^{2}}
To raise \frac{6\sqrt{2}x-4\sqrt{2}}{x} to a power, raise both numerator and denominator to the power and then divide.
\frac{36\left(\sqrt{2}\right)^{2}x^{2}-48\sqrt{2}x\sqrt{2}+16\left(\sqrt{2}\right)^{2}}{x^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(6\sqrt{2}x-4\sqrt{2}\right)^{2}.
\frac{36\left(\sqrt{2}\right)^{2}x^{2}-48\times 2x+16\left(\sqrt{2}\right)^{2}}{x^{2}}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{36\times 2x^{2}-48\times 2x+16\left(\sqrt{2}\right)^{2}}{x^{2}}
The square of \sqrt{2} is 2.
\frac{72x^{2}-48\times 2x+16\left(\sqrt{2}\right)^{2}}{x^{2}}
Multiply 36 and 2 to get 72.
\frac{72x^{2}-96x+16\left(\sqrt{2}\right)^{2}}{x^{2}}
Multiply -48 and 2 to get -96.
\frac{72x^{2}-96x+16\times 2}{x^{2}}
The square of \sqrt{2} is 2.
\frac{72x^{2}-96x+32}{x^{2}}
Multiply 16 and 2 to get 32.
\left(\frac{6\sqrt{2}x}{x}-\frac{4\sqrt{2}}{x}\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 6\sqrt{2} times \frac{x}{x}.
\left(\frac{6\sqrt{2}x-4\sqrt{2}}{x}\right)^{2}
Since \frac{6\sqrt{2}x}{x} and \frac{4\sqrt{2}}{x} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(6\sqrt{2}x-4\sqrt{2}\right)^{2}}{x^{2}}
To raise \frac{6\sqrt{2}x-4\sqrt{2}}{x} to a power, raise both numerator and denominator to the power and then divide.
\frac{36\left(\sqrt{2}\right)^{2}x^{2}-48\sqrt{2}x\sqrt{2}+16\left(\sqrt{2}\right)^{2}}{x^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(6\sqrt{2}x-4\sqrt{2}\right)^{2}.
\frac{36\left(\sqrt{2}\right)^{2}x^{2}-48\times 2x+16\left(\sqrt{2}\right)^{2}}{x^{2}}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{36\times 2x^{2}-48\times 2x+16\left(\sqrt{2}\right)^{2}}{x^{2}}
The square of \sqrt{2} is 2.
\frac{72x^{2}-48\times 2x+16\left(\sqrt{2}\right)^{2}}{x^{2}}
Multiply 36 and 2 to get 72.
\frac{72x^{2}-96x+16\left(\sqrt{2}\right)^{2}}{x^{2}}
Multiply -48 and 2 to get -96.
\frac{72x^{2}-96x+16\times 2}{x^{2}}
The square of \sqrt{2} is 2.
\frac{72x^{2}-96x+32}{x^{2}}
Multiply 16 and 2 to get 32.