Evaluate
\frac{343}{1590}\approx 0.21572327
Factor
\frac{7 ^ {3}}{2 \cdot 3 \cdot 5 \cdot 53} = 0.21572327044025158
Share
Copied to clipboard
\frac{\frac{108+5}{18}-\frac{5\times 15+11}{15}}{\frac{2\times 7+2}{7}+\frac{12-\frac{8\times 3+2}{3}}{14}}
Multiply 6 and 18 to get 108.
\frac{\frac{113}{18}-\frac{5\times 15+11}{15}}{\frac{2\times 7+2}{7}+\frac{12-\frac{8\times 3+2}{3}}{14}}
Add 108 and 5 to get 113.
\frac{\frac{113}{18}-\frac{75+11}{15}}{\frac{2\times 7+2}{7}+\frac{12-\frac{8\times 3+2}{3}}{14}}
Multiply 5 and 15 to get 75.
\frac{\frac{113}{18}-\frac{86}{15}}{\frac{2\times 7+2}{7}+\frac{12-\frac{8\times 3+2}{3}}{14}}
Add 75 and 11 to get 86.
\frac{\frac{565}{90}-\frac{516}{90}}{\frac{2\times 7+2}{7}+\frac{12-\frac{8\times 3+2}{3}}{14}}
Least common multiple of 18 and 15 is 90. Convert \frac{113}{18} and \frac{86}{15} to fractions with denominator 90.
\frac{\frac{565-516}{90}}{\frac{2\times 7+2}{7}+\frac{12-\frac{8\times 3+2}{3}}{14}}
Since \frac{565}{90} and \frac{516}{90} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{49}{90}}{\frac{2\times 7+2}{7}+\frac{12-\frac{8\times 3+2}{3}}{14}}
Subtract 516 from 565 to get 49.
\frac{\frac{49}{90}}{\frac{14+2}{7}+\frac{12-\frac{8\times 3+2}{3}}{14}}
Multiply 2 and 7 to get 14.
\frac{\frac{49}{90}}{\frac{16}{7}+\frac{12-\frac{8\times 3+2}{3}}{14}}
Add 14 and 2 to get 16.
\frac{\frac{49}{90}}{\frac{16}{7}+\frac{12-\frac{24+2}{3}}{14}}
Multiply 8 and 3 to get 24.
\frac{\frac{49}{90}}{\frac{16}{7}+\frac{12-\frac{26}{3}}{14}}
Add 24 and 2 to get 26.
\frac{\frac{49}{90}}{\frac{16}{7}+\frac{\frac{36}{3}-\frac{26}{3}}{14}}
Convert 12 to fraction \frac{36}{3}.
\frac{\frac{49}{90}}{\frac{16}{7}+\frac{\frac{36-26}{3}}{14}}
Since \frac{36}{3} and \frac{26}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{49}{90}}{\frac{16}{7}+\frac{\frac{10}{3}}{14}}
Subtract 26 from 36 to get 10.
\frac{\frac{49}{90}}{\frac{16}{7}+\frac{10}{3\times 14}}
Express \frac{\frac{10}{3}}{14} as a single fraction.
\frac{\frac{49}{90}}{\frac{16}{7}+\frac{10}{42}}
Multiply 3 and 14 to get 42.
\frac{\frac{49}{90}}{\frac{16}{7}+\frac{5}{21}}
Reduce the fraction \frac{10}{42} to lowest terms by extracting and canceling out 2.
\frac{\frac{49}{90}}{\frac{48}{21}+\frac{5}{21}}
Least common multiple of 7 and 21 is 21. Convert \frac{16}{7} and \frac{5}{21} to fractions with denominator 21.
\frac{\frac{49}{90}}{\frac{48+5}{21}}
Since \frac{48}{21} and \frac{5}{21} have the same denominator, add them by adding their numerators.
\frac{\frac{49}{90}}{\frac{53}{21}}
Add 48 and 5 to get 53.
\frac{49}{90}\times \frac{21}{53}
Divide \frac{49}{90} by \frac{53}{21} by multiplying \frac{49}{90} by the reciprocal of \frac{53}{21}.
\frac{49\times 21}{90\times 53}
Multiply \frac{49}{90} times \frac{21}{53} by multiplying numerator times numerator and denominator times denominator.
\frac{1029}{4770}
Do the multiplications in the fraction \frac{49\times 21}{90\times 53}.
\frac{343}{1590}
Reduce the fraction \frac{1029}{4770} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}