Evaluate
\frac{2}{5}-\frac{9}{5}i=0.4-1.8i
Real Part
\frac{2}{5} = 0.4
Share
Copied to clipboard
\frac{\left(6+7i\right)\left(-3-4i\right)}{\left(-3+4i\right)\left(-3-4i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, -3-4i.
\frac{\left(6+7i\right)\left(-3-4i\right)}{\left(-3\right)^{2}-4^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(6+7i\right)\left(-3-4i\right)}{25}
By definition, i^{2} is -1. Calculate the denominator.
\frac{6\left(-3\right)+6\times \left(-4i\right)+7i\left(-3\right)+7\left(-4\right)i^{2}}{25}
Multiply complex numbers 6+7i and -3-4i like you multiply binomials.
\frac{6\left(-3\right)+6\times \left(-4i\right)+7i\left(-3\right)+7\left(-4\right)\left(-1\right)}{25}
By definition, i^{2} is -1.
\frac{-18-24i-21i+28}{25}
Do the multiplications in 6\left(-3\right)+6\times \left(-4i\right)+7i\left(-3\right)+7\left(-4\right)\left(-1\right).
\frac{-18+28+\left(-24-21\right)i}{25}
Combine the real and imaginary parts in -18-24i-21i+28.
\frac{10-45i}{25}
Do the additions in -18+28+\left(-24-21\right)i.
\frac{2}{5}-\frac{9}{5}i
Divide 10-45i by 25 to get \frac{2}{5}-\frac{9}{5}i.
Re(\frac{\left(6+7i\right)\left(-3-4i\right)}{\left(-3+4i\right)\left(-3-4i\right)})
Multiply both numerator and denominator of \frac{6+7i}{-3+4i} by the complex conjugate of the denominator, -3-4i.
Re(\frac{\left(6+7i\right)\left(-3-4i\right)}{\left(-3\right)^{2}-4^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(6+7i\right)\left(-3-4i\right)}{25})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{6\left(-3\right)+6\times \left(-4i\right)+7i\left(-3\right)+7\left(-4\right)i^{2}}{25})
Multiply complex numbers 6+7i and -3-4i like you multiply binomials.
Re(\frac{6\left(-3\right)+6\times \left(-4i\right)+7i\left(-3\right)+7\left(-4\right)\left(-1\right)}{25})
By definition, i^{2} is -1.
Re(\frac{-18-24i-21i+28}{25})
Do the multiplications in 6\left(-3\right)+6\times \left(-4i\right)+7i\left(-3\right)+7\left(-4\right)\left(-1\right).
Re(\frac{-18+28+\left(-24-21\right)i}{25})
Combine the real and imaginary parts in -18-24i-21i+28.
Re(\frac{10-45i}{25})
Do the additions in -18+28+\left(-24-21\right)i.
Re(\frac{2}{5}-\frac{9}{5}i)
Divide 10-45i by 25 to get \frac{2}{5}-\frac{9}{5}i.
\frac{2}{5}
The real part of \frac{2}{5}-\frac{9}{5}i is \frac{2}{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}