Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(6+7i\right)\left(-3-4i\right)}{\left(-3+4i\right)\left(-3-4i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, -3-4i.
\frac{\left(6+7i\right)\left(-3-4i\right)}{\left(-3\right)^{2}-4^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(6+7i\right)\left(-3-4i\right)}{25}
By definition, i^{2} is -1. Calculate the denominator.
\frac{6\left(-3\right)+6\times \left(-4i\right)+7i\left(-3\right)+7\left(-4\right)i^{2}}{25}
Multiply complex numbers 6+7i and -3-4i like you multiply binomials.
\frac{6\left(-3\right)+6\times \left(-4i\right)+7i\left(-3\right)+7\left(-4\right)\left(-1\right)}{25}
By definition, i^{2} is -1.
\frac{-18-24i-21i+28}{25}
Do the multiplications in 6\left(-3\right)+6\times \left(-4i\right)+7i\left(-3\right)+7\left(-4\right)\left(-1\right).
\frac{-18+28+\left(-24-21\right)i}{25}
Combine the real and imaginary parts in -18-24i-21i+28.
\frac{10-45i}{25}
Do the additions in -18+28+\left(-24-21\right)i.
\frac{2}{5}-\frac{9}{5}i
Divide 10-45i by 25 to get \frac{2}{5}-\frac{9}{5}i.
Re(\frac{\left(6+7i\right)\left(-3-4i\right)}{\left(-3+4i\right)\left(-3-4i\right)})
Multiply both numerator and denominator of \frac{6+7i}{-3+4i} by the complex conjugate of the denominator, -3-4i.
Re(\frac{\left(6+7i\right)\left(-3-4i\right)}{\left(-3\right)^{2}-4^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(6+7i\right)\left(-3-4i\right)}{25})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{6\left(-3\right)+6\times \left(-4i\right)+7i\left(-3\right)+7\left(-4\right)i^{2}}{25})
Multiply complex numbers 6+7i and -3-4i like you multiply binomials.
Re(\frac{6\left(-3\right)+6\times \left(-4i\right)+7i\left(-3\right)+7\left(-4\right)\left(-1\right)}{25})
By definition, i^{2} is -1.
Re(\frac{-18-24i-21i+28}{25})
Do the multiplications in 6\left(-3\right)+6\times \left(-4i\right)+7i\left(-3\right)+7\left(-4\right)\left(-1\right).
Re(\frac{-18+28+\left(-24-21\right)i}{25})
Combine the real and imaginary parts in -18-24i-21i+28.
Re(\frac{10-45i}{25})
Do the additions in -18+28+\left(-24-21\right)i.
Re(\frac{2}{5}-\frac{9}{5}i)
Divide 10-45i by 25 to get \frac{2}{5}-\frac{9}{5}i.
\frac{2}{5}
The real part of \frac{2}{5}-\frac{9}{5}i is \frac{2}{5}.