Solve for z
z=\frac{\sqrt{6}}{2}-3\approx -1.775255129
z=-\frac{\sqrt{6}}{2}-3\approx -4.224744871
Share
Copied to clipboard
2z+6=\sqrt{6} 2z+6=-\sqrt{6}
Take the square root of both sides of the equation.
2z+6-6=\sqrt{6}-6 2z+6-6=-\sqrt{6}-6
Subtract 6 from both sides of the equation.
2z=\sqrt{6}-6 2z=-\sqrt{6}-6
Subtracting 6 from itself leaves 0.
2z=\sqrt{6}-6
Subtract 6 from \sqrt{6}.
2z=-\sqrt{6}-6
Subtract 6 from -\sqrt{6}.
\frac{2z}{2}=\frac{\sqrt{6}-6}{2} \frac{2z}{2}=\frac{-\sqrt{6}-6}{2}
Divide both sides by 2.
z=\frac{\sqrt{6}-6}{2} z=\frac{-\sqrt{6}-6}{2}
Dividing by 2 undoes the multiplication by 2.
z=\frac{\sqrt{6}}{2}-3
Divide \sqrt{6}-6 by 2.
z=-\frac{\sqrt{6}}{2}-3
Divide -\sqrt{6}-6 by 2.
z=\frac{\sqrt{6}}{2}-3 z=-\frac{\sqrt{6}}{2}-3
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}