Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\left(6+2\sqrt{5}\right)\left(1-2\sqrt{5}+\left(\sqrt{5}\right)^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-\sqrt{5}\right)^{2}.
\left(6+2\sqrt{5}\right)\left(1-2\sqrt{5}+5\right)
The square of \sqrt{5} is 5.
\left(6+2\sqrt{5}\right)\left(6-2\sqrt{5}\right)
Add 1 and 5 to get 6.
36-\left(2\sqrt{5}\right)^{2}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 6.
36-2^{2}\left(\sqrt{5}\right)^{2}
Expand \left(2\sqrt{5}\right)^{2}.
36-4\left(\sqrt{5}\right)^{2}
Calculate 2 to the power of 2 and get 4.
36-4\times 5
The square of \sqrt{5} is 5.
36-20
Multiply 4 and 5 to get 20.
16
Subtract 20 from 36 to get 16.