Evaluate
\frac{67}{55}\approx 1.218181818
Factor
\frac{67}{5 \cdot 11} = 1\frac{12}{55} = 1.2181818181818183
Share
Copied to clipboard
\frac{\frac{30}{5}+\frac{3}{5}+\frac{1}{10}}{\frac{5\times 2+1}{2}}
Convert 6 to fraction \frac{30}{5}.
\frac{\frac{30+3}{5}+\frac{1}{10}}{\frac{5\times 2+1}{2}}
Since \frac{30}{5} and \frac{3}{5} have the same denominator, add them by adding their numerators.
\frac{\frac{33}{5}+\frac{1}{10}}{\frac{5\times 2+1}{2}}
Add 30 and 3 to get 33.
\frac{\frac{66}{10}+\frac{1}{10}}{\frac{5\times 2+1}{2}}
Least common multiple of 5 and 10 is 10. Convert \frac{33}{5} and \frac{1}{10} to fractions with denominator 10.
\frac{\frac{66+1}{10}}{\frac{5\times 2+1}{2}}
Since \frac{66}{10} and \frac{1}{10} have the same denominator, add them by adding their numerators.
\frac{\frac{67}{10}}{\frac{5\times 2+1}{2}}
Add 66 and 1 to get 67.
\frac{\frac{67}{10}}{\frac{10+1}{2}}
Multiply 5 and 2 to get 10.
\frac{\frac{67}{10}}{\frac{11}{2}}
Add 10 and 1 to get 11.
\frac{67}{10}\times \frac{2}{11}
Divide \frac{67}{10} by \frac{11}{2} by multiplying \frac{67}{10} by the reciprocal of \frac{11}{2}.
\frac{67\times 2}{10\times 11}
Multiply \frac{67}{10} times \frac{2}{11} by multiplying numerator times numerator and denominator times denominator.
\frac{134}{110}
Do the multiplications in the fraction \frac{67\times 2}{10\times 11}.
\frac{67}{55}
Reduce the fraction \frac{134}{110} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}